

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΓΕΝΙΚΟΥ ΤΜΗΜΑΤΟΣ ΘΕΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΣΤΗΝ ΓΕΩΠΟΝΙΑ ΚΛΑΔΟΣ ΙΙΙ : ΜΕΛΕΤΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ

Θέμα: Γεωγραφική και βοτανική ταξινόμηση ειδών Σιδερίτη (Sideritis spp) αυτοφυόμενων στην Ελλάδα, με χρήση της υπέρυθρης φασματοσκοπίας συνδυασμένης με χημειομετρικές μεθόδους

Επιβλέπων Καθηγητής: Παππάς, Χρήστος Επικ. Καθηγητής Γ.Π.Α.

Οκτώβριος 2014

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ

Θέμα: Γεωγραφική και βοτανική ταξινόμηση ειδών Σιδερίτη (*Sideritis spp*) αυτοφυόμενων στην Ελλάδα, με χρήση της υπέρυθρης φασματοσκοπίας συνδυασμένης με χημειομετρικές μεθόδους

Καραχασάνη Αρχοντία

ΤΡΙΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Επιβλέπων:

Χρήστος Παππάς, Επίκουρος Καθηγητής Γ.Π.Α.

Μέλη:

Κυμπάρης Αθανάσιος, Επίκουρος Καθηγητής Δ.Π.Θ.

Μόσχος Πολυσίου, Καθηγητής Γ.Π.Α.

Ευχαριστίες

Με αφορμή την ολοκλήρωση της παρούσας εργασίας, θα ήθελα να εκφράσω τις πιο θερμές μου ευχαριστίες στον κ. Χρήστο Παππά, Επίκουρο Καθηγητή του Γεωπονικού Πανεπιστημίου Αθηνών και επιβλέποντα της μεταπτυχιακής αυτής διατριβής για την εποικοδομητική καθοδήγηση και την άριστη συνεργασία που μου παρείχε κατά τη διάρκεια της εκπόνησης της μελέτης αλλά και για την γενικότερη συμβολή του στις μεταπτυχιακές μου σπουδές.

Ιδιαίτερες ευχαριστίες οφείλω, στον κ. Κοράκη Γεώργιο, Επίκουρο Καθηγητή του Τμήματος Δασολογίας και Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων του Δημοκρίτειου Πανεπιστημίου Θράκης του οποίου η συμβολή ήταν καθοριστική για να διεξαχθεί αυτή η μελέτη.

Επίσης θα ήθελα να ευχαριστήσω τον Καθηγητή και Διεθυντή του Εργαστηρίου Χημείας του Γεωπονικού Πανεπιστημίου Αθηνών. Μόσχο Πολυσίου και τον κ. Κυμπάρη Αθανάσιο, Επίκουρος Καθηγητή του Δημοκρίτειου Πανεπιστημίου Θράκης για τη συμμετοχή τους στην τριμελή εξεταστική επιτροπή και για το χρόνο που διέθεσαν στην αξιολόγηση και διόρθωση της διπλωματικής μου εργασίας. Τον κ. Μόσχο Πολυσίου ευχαριστώ επίσης για τη διάθεση του εργαστηριακού χώρου και εξοπλισμού.

Ευχαριστώ ακόμα, τους Καθηγητές του Μεταπτυχιακού Προγράμματος του Κλάδου, ΙΙΙ και το προσωπικό του Εργαστηρίου Χημείας, για την προσφορά τους, την ευγένειά τους και την προθυμία τους να βοηθήσουν, όποτε παρουσιαζόταν ανάγκη.

Περίληψη

Το φυτό του γένους *Sideritis* γνωστό και ως «τσάι του βουνού» χρήσιμοποιείται από αρχαιοτάτων χρόνων εξαιτίας των ευεργετικών και φαρμακολογικών ιδιοτήτων του με βάση τη λαϊκή φαρμακολογία, με κύρια χρήση του όπως υποδηλώνει και το ονομά του ως αφέψημα.

Κατά τη διάρκεια της ιστορικής εξέλιξης, έχουν γίνει πολλές προσπάθειες για την ταξινόμηση του γένους *Sideritis*. Ο βαθμός πολυμορφισμο, η παρουσία της διακύμανσης οικοτύπου και ο συχνός υβριδισμός μεταξύ των ειδών, καθιστά δύσκολη την ταξινόμηση του γένους. Η κατάταξη του μέχρις στιγμής βασίζεται στα μορφολογικά, κυτταρολογικά, παλυνολογικά, γενετικά και χημικά χαρακτηριστικά του.

Το αυξημένο καταναλωτικό ενδιαφέρον στην αναζήτηση τροφίμων με πιστοποίησηεπιβεβαίωση της γεωγραφικής καταγωγής. εχει οδηγήσει την επιστημονική κοινότητα στην ανάγκη της γεωγραφικής ταυτοποίησης με γρήγορους, εύκολους και αξιόπιστους εργαστηριακούς μεθόδους που θα δώσουν απάντηση σε αυτό το ζητούμενο. Σκοπός λοιπόν της συγκεκριμμένης μελέτης είναι η γεωγραφική και βοτανική ταξινόμηση του γένους με τη μέθοδο FT-IR σε συνδιασμό με χημειομετρικές μεθόδους.

Για το σκοπό αυτό καταγράφηκαν με την τεχνική DRIFTS τα φάσματα των άνθεων, φύλλων/βρακτίων και στελεχών. Τα φάσματα αυτά λειάνθηκαν και διορθώθηκε η βασική τους γραμμή. Στη συνέχεια κανονικοποίηθηκαν ή επεξεργάστηκαν με τον αλγόριθμο Kubelka-Munk. Η διαχωριστική ανάλυση έγινε με χρήση του στατιστικού λογιμικού TQ Analyst.

Πραγματοποιήθηκαν δύο πειράματα διαχωριστικής ανάλυσης, ένα για τη βοτανική ταξινόμηση του είδους/υποείδους και ένα για τη γεωγραφική τους ταξινόμηση. Κατά την βοτανική ταξινόμηση το ποσοστό επιτυχούς ταξινόμησης για τις τρείς μεθόδους (εξομαλυνθέντα, Kubelka-Munk και κανονοικοποιημένα φάσματα) ήταν παρόμοιο. Όσον αφορά τα μέρη του φυτκού υλικού τα στελέχη βρέθηκαν καταλληλότερα για τη βοτανική διαχωριστική ανάλυση. Κατά τη γεωγραφική ταξινόμηση οι μέθοδοι Kubelka-Munk και κανονοικοποιήσης οι μέθοδοι Kubelka-Munk και τα στελέχη βρέθηκαν καταλληλότερα για τη βοτανική διαχωριστική ανάλυση. Κατά τη γεωγραφική ταξινόμηση οι μέθοδοι Kubelka-Munk και κανονικοποίησης παρουσίασαν υψηλότερα ποσοστά επιτυχούς ταξινόμησης από τα εξομαλυνθέντα, ενώ τα μέρη του φυτικού υλικού είχαν παρόμοια αποτελέσματα με τα φύλλα/βράκτια να παρουσιάζουν ένα σχετικό προβάδισμα. Η διαχωριστική ανάλυση της βοτανικής

ταξινόμησης, παρόλα αυτά και στις δύο ταξινομήσεις το ποοσοστό επιτυχούς ταξινόμησης κυμαινόταν γύρω στο 93 με 96 % καθιστώντας τη μέθοδο κατάλληλη γα τη βοτανική και γεωγραφική ταξινόμηση του γένους.

Εργαστήριο Χημείας του Γ.Π.Α

Οκτώβριος 2014

Λέξεις κλειδιά : Σιδερίτης • Sideritis • Γεωγραφική Ταμινόμηση • Φασματοσκοπία Υπερύθρου με Μετασχηματισμό Fourier • Μέθοδο Drift • Discriminant Analysis

Abstract

The plant of *Sideritis* known as "mountain tea", is used since the ancient times because of its health promoting and pharmacological properties, according to the folk medicine. The main use of Sideritis is as a decoction, as its name indicates.

During the historical evolution, there have been many attempts to classify the genus *Sideritis*. The degree of polymorphism, the presence of the variance ecotype and frequent hybridization between species, makes difficult the classification of the genus. The classification so far based on the morphological, cytological, palynology, genetic and chemical characteristics.

The increased consumer interest about the food certification and the confirmation of geographical origin of products has led the scientific community in investigating of methods that could provide the geographical identification of a product with fast, easy and reliable laboratory methods. The aim of this study is the geographical and botanical classification of the genus *Sidertis* in Greece with the FT-IR method coupled with chemometrics methods.

The technique recorded DRIFTS spectra flowers, leaves/ bracts and stems. These spectra were smoothed and corrected their baseline. Then normalized or were treated with the algorithm Kubelka-Munk. The discriminant analysis was performed using the Statistical software of TQ Analyst.

The experiment was taken place with two kind of discriminant analysis, one of botanical classification and one of geographical. As concerns the discriminant analysis of botanical classification, the three methods (smoothed, Kubelka-Munk, normalized) occurred the same results, but the stems showed higher percentage of successful classification than the other two plant materials (flowers and leaves/bracts). At the geographical classification of species/subspecies, the methods of Kubelka-Munk and normalization showed higher percentage of successful classification than the smoothed. The parts of plant material (flowers, leaves/bracts and stems) had almost the same percentage of successful classification, with the leaves/bracts to be more adequate. The discriminant analysis of botanical classification showed better results than in the geographical classification. However in both classifications the percentage of a successful

classification was around 93 to 96 %, making the method suitable for the botanical and geographical classification of the genus.

Laboratory of Chemistry of A.U.A

October 2014

Keywords: Sideritis • Geographical Classification • Fourier Transform Infra Red Spectroscopy • Drift Method • Discriminant Analysis

Πίνακας Περιεχομένων
Ευχαριστίες i
Περίληψη ii
Abstract iv
1. Févoç Sideritis
1.1 Γεωγραφική ταξινόμηση1
 1.2 Ιστορική αναδρομή
 Ταξινόμηση-περιγραφή του γένους Sideritis
1.3 Το γένος <i>Sideritis</i> στην Ελλάδα6
1.4 Χρήσεις και σημασία του7
1.5 Χημική σύσταση του <i>Sideritis</i> 8
1.5.1 Πρωτογενείς μεταβολίτες8
1.5.2 Δευτερογενείς μεταβολίτες9
2. Υπέρυθρη Φασματοσκοπία και Χημειομετρία 14
2.1 Εισαγωγή
2.2 Βασικές αρχές14
2.3 Φασματοφωτοσκοπία FT-IR16
(Fourier Transform Infrared spectroscopy)16
2.3.1 Μετασχηματισμός Fourier16
2.4 Οργανολογία φασματοφωτόμετρου FT-IR17
2.5 Πλεονεκτήματα της FT-IR
2.6 Εφαρμογές του φασματοφωτόμετρου FT-IR στον χώρο της19
βιομηχανίας19
2.7 Φασματοσκοπία FT-IR με την τεχνική της διάχυτης ανάκλασης
(Diffuse Reflectance Fourier Transformed Infrared Spectroscopy – DRIFTS)
2.8 Θεωρία Kubelka-Munk21
2.7 Χημειομετρία
2.9 FT-IR και προσδιορισμός γεωγραφικής προέλευσης23
3. Υλικά και μέθοδοι 26
3.1 Φυτικό υλικό-προετοιμασία δείγματος26
3.2 Μελέτη φυτικού υλικού με τεχνική FT-IR

3.2.1. Καταγραφή φασμάτων
3.2.2. Επεξεργασία φασμάτων
3.3 Στατιστική ανάλυση
3.4 Ανάλυση κύριων συνιστωσών
(PCA-Principal Component Analysis)
3.5 Απόσταση Mahalanobis
4. Αποτελέσματα και Συζήτηση 34
4.1 Φάσματα FT-IR
4.2 Στατιστική επεξεργασία των φασμάτων FT-IR
4.2.1 Διαχωριστική ανάλυση με βάση τη βοτανική ταξινόμηση του γένους Sideritis
4.2.2 Διαχωριστική ανάλυση με βάση τη γεωγραφική ταξινόμηση του γένους Sideritis
5. Συμπεράσματα 96
6. Βιβλιογραφία 98
7.Παράρτημα 103
Κανονικοποιημένα Φάσματα Απορρόφησης του γένους Sideritis103

Κατάλογος Πινάκων

Αριθμός πίνακα	Τίτλος Πίνακα	Σελίδα
1.1	Ταξινόμηση κατά Fraga (2012) και Fraga et al. (2009) στις γεωγραφικές περιοχές της Μεσογείου και της Μακαρονησίας με βάση την περιεκτικότητα τους σε διτερπένια και τριτερπένια	5
1.2	Διατροφική αξία % (w/w) εμπορικού σκευάσματος Sideritis	9
2.1	Πλεονεκτήματα IR (Smith 2011)	18
3.1	Περιοχές συλλογής και βοτανική ταξινόμηση φυτικού υλικού	26-7
4.1	Οι αποδόσεις των φασμάτων απορρόφησης FT-IR της γεωγραφικής περιοχής της Σαμοθράκης	37
4.2- 4.18	Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης	41-2,45-6,48-9,52- 3,55-6,59-60,62- 3,65-6,68-9,72,74- 5,77-8,80-1,83,85- 6,88-9,91,94

Κατάλογος Συντμήσεων

Σύντμηση	Αγγλική ονομασία	Ελληνική ονομασία	
FT - IR	Fourier Transform Infra Red spectroscopy	Φασματοσκοπία υπερύθρου με μετασχηματισμό Fourier	
RSN	Signal –to-noise ratio	Λόγος σήματος προς θόρυβο	
DRIFTS	Diffuse Reflectance Infra Red Fourier Transform Spectroscopy	Φασματοσκοπία υπερύθρου Διάχυτης Ανάκλασης με μετασχηματισμό Fourier	
PCA	Principal components Analysis	Κύριες συνιστώσες ανάλυσης	
PC	Pricipal components	Κύριες συνιστώσες	
PCS	Principal components Spectrum	Φάσμα κύριων συνιστωσών	

1. Γένος Sideritis

1.1 Γεωγραφική ταξινόμηση

Το γένος Sideritis ανήκει στην Lamiaceae, περιλαμβάνει πάνω από 150 είδη που διανέμονται σε εύκρατες και τροπικές περιοχές του Βόρειου ημισφαιρίου, από Μπαχάμες προς τη Δυτική Κίνα και από τη Γερμανία στο Μαρόκο. Τα περισσότερα είδη βρίσκονται κυρίως στην περιοχή της Μεσογείου, από τις Καναρίους Νήσους και τη Μαδέρα έως τον Καύκασο. Η Ισπανία και Τουρκία διαθέτουν το μεγαλύτερο αριθμό των διαφορετικών ειδών. Στην Ισπανία, τα περισσότερα από αυτά τα είδη κατανέμονται στο νοτιοανατολικό τμήμα της Ιβηρικής Χερσονήσου και των Καναρίων Νήσων, ενώ στην Τουρκία εντοπίζονται κυρίως στις περιοχές του Μαρμαρά και του Αιγαίου. (Gonzalez-Burgos et al.2011)

Επιπλέον, είναι σημαντικό να επισημάνουμε ότι το γένος Sideritis περιέχει ένα μεγάλο αριθμό ενδημικών ειδών: 46 είδη, 12 υποείδη και δύο ποικιλίες αναπτύσσονται στην Τουρκία, 36 είδη, 10 υποείδη και δύο ποικιλίες των οποίων είναι ενδημικά (ποσοστό ενδημισμού 77%). 25 είδη Sideritis αναπτύσσονται στο Μαρόκο, 16 των οποίων είναι ενδημικά (Ghoumari et al., 2005). Στην Ιβηρική Χερσόνησο και στις Βαλεαρίδες Νήσους

εντοπίζονται 49 είδη του Sideritis, 36 από τα οποία είναι ενδημικά. Τέλος στις Κανάριους Νήσους, αυτό γένος αντιπροσωπεύεται από 19 ενδημικά είδη (Fraga et al., 2009)

1.2 Ιστορική αναδρομή

Το επιστημονικό του όνομα Sideritis προέρχεται από την ελληνική λέξη σίδηρος και κατά μια εκδοχή δόθηκε στο φυτό, εξαιτίας της ικανότητάς του να θεραπεύει τις πληγές που προκαλούνται από σιδερένια αντικείμενα. Σύμφωνα με άλλη, επειδή αποτελεί φυσική πηγή σιδήρου, αφού στα ροφήματα που παρασκευάζονται από αυτό περιέχεται αρκετός σίδηρος. Μια τρίτη άποψη υποστηρίζει ότι η ονομασία του οφείλεται στο σχήμα των δοντιών του κάλυκα, που μοιάζουν με αιχμή λόγχης. Εκτός από την επουλωτική του ιδιότητα τα είδη του Sideritis έχουν χρησιμοποιηθεί ευρέως για αιώνες λόγω των αντιφλεγμονωδών, αντιμικροβιακών και αντιελκογόνων ιδιοτήτων τους. Η εκτεταμένη και σημαντική χρήση του Sideritis spp. στη μεσογειακή παραδοσιακή ιατρική έχει αναφερθεί σε πολλές φαρμακευτικά εγχειρίδια. Από το Λινναίο (1753) περιγράφεται το Sideritis L. canariensis. Ο Font Quer αργότερα επισημάνει στο βιβλίο του "Μια αναθεώρηση του Διοσκουρίδη" την αξιοσημείωτη ευρεία χρήση του Sideritis αυς επουλωτικό κυρίως στον τομέα της κτηνιατρική στην Καταλονία κατά το πρώτο μισό του εικοστού αιώνα. (Gonzalez-Burgos et al., 2011)

Η βοτανική ταξινόμηση του γένους Sideritis στην Μακαρονησία είχε αποτελέσει αιτία διαμάχης. Οι Aiton (1789) και Poiret (1811) διατήρησαν το όνομα Sideritis, ενώ οι Webb και Berthelot (1845) πρότειναν τη δημιουργία ενός νέου γένους, Leucophae, που να συμπεριλαμβάνει το Sideritis τη Μακαρονησίας. Αργότερα, ορισμένοι συγγραφείς το ανάφεραν με το όνομα Sideritis, ενώ άλλοι προτιμούσαν το Leucophae. Ο Huynh το 1972, βάσει παλυνολογικών δεδομένων, χώρισε τελικά το Sideritis της Μακαρονησίας σε δύο ομάδες, Empedocleopsis και Marrubiastrum, και επαλήθευσε τις ήδη υπάρχουσες τέσσερις ομάδες του γένους Sideritis της Μεσογείου (Hesiodia, Burgsdorffia, Empedoclea και Sideritis). (Fraga 2012)

1.3 Ταξινόμηση-περιγραφή του γένους Sideritis

Τα είδη του γένους Sideritis είναι μονοετείς ή πολυετείς πόες, αποξυλωμένες ενίστε

στη βάση, χνουδωτές, που αναπτύσσονται μέχρι 40-50 cm και ανήκουν στα αρωματικά φυτά. Τα φύλλα του είναι συνήθως στενά, αντίθετα, επιμήκη λογγοειδή, ακέραια ή πριονωτά, τα κατώτερα με μίσχο και τα ανώτερα άμισχα. Τα άνθη είναι ερμαφρόδιτα κίτρινα ή λευκά, μικρά, κατά σπονδύλους απομακρυσμένους ή πλησίον αλλήλους χωρίς βράκτια, σε ταξιανθία στάχυ. Ο κάλυκας είναι σωληνοειδής που καταλήγει σε δόντια και σκεπάζεται από μακρύ και

πυκνό τρίχωμα. Η στεφάνη είναι κίτρινη, κιτρινόλευκη, λευκή ή ροδόχροη με δύο χείλη, από τα οποία το επάνω

Εικόνα 1.2 Βοτανικά χαρακτηριστικά του γένους Sideritis

αποτελείται από δύο συμφυή πέταλα και είναι δισχιδές και το κάτω καταλήγει σε τρείς λοβούς με το μεσαίο μεγαλύτερο. Έχει τέσσερις στήμονες, οι δύο μπροστινοί επιμηκέστεροι, το στύλο που καταλήγει σε δύο άνισα στίγματα και δίχωρη ωοθήκη που με ψευδή διαφράγματα γίνεται τετράχωρη (Γκόλιαρης, 1999). Τα είδη του γένους *Sideritis* αναπτύσσονται άριστα σε πλήρη ήλιο και είναι καλά προσαρμοσμένα σε συνθήκες ξηρασίας. Βρίσκονται σε βραχώδεις πλαγιές και λιβάδια, από λίγα μέτρα πάνω από την επιφάνεια της θάλασσας μέχρι και περισσότερο από 3000 m, και απαιτούν μέτρια πλούσια σε θρεπτικά συστατικά και ελαφρώς αλκαλικά εδάφη.

Κατά τη διάρκεια της ιστορικής εξέλιξης , έχουν γίνει, όπως αναφέρθηκε και παραπάνω, πολλές προσπάθειες για την ταξινόμηση του γένους *Sideritis* . Ο βαθμός πολυμορφισμού , η παρουσία της διακύμανσης οικοτύπου και ο συχνός υβριδισμός μεταξύ των ειδών , καθιστά ακόμη πιο δύσκολη την ταξινόμηση του γένους . Η κατάταξη του βασίζεται στα μορφολογικά , κυτταρολογικά, παλυνολογικά, γενετικά και χημικά χαρακτηριστικά του.

Το γένος Sideritis χαρακτηρίζεται όπως αναφέρθηκε από ισχυρές τάσεις υβριδισμού μεταξύ των ειδών. Αναφορικά ο Sideritis rodriguezii είναι των ειδών Sideritis serrata και Sideritis bourgaeana, o Sideritis laderoi (υβρίδιο των Sideritis hirsute και Sideritis lagascana) και ο Sideritis arizagae (Sideritis hyssopifolia×Sideritis incana)

Ως αποτέλεσμα των υβριδισμών αυτών, η ταξινόμηση του γίνεται πιο δύσκολη. Τόσο η μελέτη κάποιων μορφολογικών χαρακτήρων όσο και η ανάλυση των δευτερογενών μεταβολιτών (διτερπενοειδή και φλαβονοειδή) που θεωρούνται ως χημοταξονομικοί δείκτες αυτού του γένους, φάνηκαν χρήσιμοι για τον αποσαφηνισμό των προβλημάτων στη συστηματική ταξινόμηση των ειδών Sideritis.

Η ανάλυση με Υγρή Χρωματογραφία Υψηλής Απόδοσης (High Perfomance Liquid Chromatography, HPLC) για παράδειγμα δείχνει πως η περιεκτικότητα των άγλυκων φλαβονοειδών βοηθά στη διάκριση των διαφορών μεταξύ του Sideritis scardica και Sideritis raeseri. Οι 5,7-OH φλαβόνες, όπως η χρυσοεριόλη, είναι παρούσες στο Sideritis scardica, ενώ το Sideritis raeseri είναι πλούσιο σε 8-OH φλαβόνες, όπως υπολαετίνη ή 4-μεθυλοαιθέρας της ισοσκουτελαρεϊνης (Gonzalez-Burgos et al., 2011)

Οι Mendoza-Heuer (1977) διαίρεσαν το γένος αυτό σε δύο υπογένη, το Sideritis και το Leucophae. Το πρώτο αποτελείται από τέσσερις ομάδες το Hesiodia, το Burgsdorffia, το Empedoclea και το Sideritis, και αποτελείται από περίπου 125 είδη που διανέμονται σε όλη τη Βόρεια Αφρική, την Ιβηρική Χερσόνησο, τις χώρες της Μεσογείου και της Μέσης Ανατολής, ενώ το δεύτερο, αποτελείται από τρείς ομαδες το Cretica, το Empedocleopsis και το Marrubiastrum, που διανέμονται στη Μακαρονησία. (Fraga 2012)

Εικόνα 1.3 Ταξινόμηση του γένους *Sideritis* κατά Mendoza-Heuer (1977) (Fraga 2012)

Ο διαχωρισμός αυτός επιβεβαιώνεται από τις μελέτες των Fraga et al. 2009 και Fraga 2012 καθώς γίνεται μια προσπάθεια χημειοταξινόμησης του είδους στις γεωγραφικές περιοχές της Μακαρονησίας και της Μεσογείου αντίστοιχα. Στη γεωγραφική περιοχή της Μεσογείου ο Fraga (2012) χωρίζει το γένος του *Sideritis* σε τέσσερεις ομάδες, ενώ στη περιοχή της Μακαρονησίας σε τρεις ομάδες με βάση τη περιεκτικότητά τους σε διτερπένια και τριτερπένια. Στον πίνακα 1.1 παρακάτω γίνεται μία προσπάθεια σύνοψης των αποτελεσμάτων των δύο μελετών.

Πίνακας 1.1: Ταξινόμηση κατά τους Fraga (2012) και Fraga et al.. (2009) στις γεωγραφικές περιοχές της Μεσογείου και της Μακαρονησίας με βάση την περιεκτικότητα τους σε διτερπένια και τριτερπένια

	Ομάδα			
Γεωγραφική προέλευση	1 ^ŋ	2 ^η	3 ^η	4 ⁿ
Μεσόγειος (Fraga 2012)	τριτερπένια ή στερόλες Όχι διτερπένια	δικυκλικά διτερπένια του λαβδανίου ή του οζειδίου του λαβδανίου	τετρα-κυκλικά διτερπένια του ent-καουρενίου	-
Μακαρονησία (Fraga et al. 2009)	τριτερπένια Όχι διτερπένια	δικυκλικά διτερπένια άφθονες φλαβόνες Όχι τριτερπένια	τριτερπένια διτερπένια κυρίως τύπου καουρενίων και τραχυλοβενίων	υποομάδα 1: • Παράγωγα των ent -16, 17 - διυδροξυ –15-μπεγερενίων • Παράγωγα των ent-16β,17- διυδροξυ-13-ατισενίων • υποομάδα 2: Παράγωγα των ent-14α-υδροξυ–15- μπεγερενίων

Οι μελέτες αυτές αλλα και προηγούμενες μελέτες φτάνουν στο συμπέρασμα, ότι οι ομάδες αυτές κατα Mendoza-Heuer (1977) εξελικτικά έχουν τη προκειμένη σειρά:

Μακαρονησία

Creticae<Empedocleopsis<Marrubiastrum

Μεσόγειος

Hesidia<Burgsdorfia<Empedoclea<Sideritis

Η εξελικτική αυτή σειρά ίσως δικαιολογεί την εμφάνιση πολυπλοκότερων δομών διτερπενίων σύμφωνα με τους Fraga et al. (2009), παρόλα αυτά απαιτούνται περισσότερες μελέτες για την επιβεβαίωση αυτού του συμπεράσματος.

1.3 Το γένος Sideritis στην Ελλάδα

Η Ελλάδα είναι ιδιαίτερα πλούσια σε ενδημικά είδη του φυτού και μάλιστα ποικίλλοντα κατά διαμερίσματα από τη Μακεδονία μέχρι την Κρήτη και σε υψόμετρο που κυμαίνεται από 500 έως 2.000 μέτρα. Τα φυτά ευδοκιμούν σε ξηρά πετρώδη, ασβεστολιθικά και γενικά υποβαθμισμένα εδάφη, σε διάφορες περιοχές της χώρας, όπως στην Ήπειρο, στη Μακεδονία, στην Κρήτη, στα Ιόνια νησιά, στη Μεσσηνία, στο Πήλιο και στην Εύβοια. Τα είδη που είναι γνωστά στη χώρα μας με το κοινό όνομα «τσάι του βουνού» ανήκουν στο γένος *Sideitis I., Section Empedoclía (Raffin.) Bentham* και παίρνουν το όνομά τους από την περιοχή που αυτοφύονται, όπως τσάι Κρήτης, Ολύμπου, τσάι Ταϋγέτου ή Μαλεβού κ.α.

Αυτοφύεται σχεδόν αποκλειστικά στις ορεινές περιοχές της Ελλάδας και υπολογίζονται περίπου στα 183 τα καλλιεργούμενα είδη και 74 τα άγριας συγκομιδής, ενώ από αυτά τα 17 αποτελούν ενδημικά είδη, που εξαπλώνονται από τη Μακεδονία ως Κρήτη και τα Ιόνια Νησιά.

Τα πιο γνωστά από τα ενδημικά είδη του Sideritis είναι παρατίθενται παρακάτω: Sideritis athoa Pap. & Kokkini (τσάι βλάχικο)., Sideritis clandestina Chaub & Bory (τσάι του Μαλεβού ή Ταϋγέτου), Sideritis scardica Griseb.(τσάι Ολύμπου), Sideritis raeseri Boiss & Heldr (τσάι του βελουχιού ή Παρνασσού)., Sideritis syriaca L. (τσάι Κρήτης) και Sideritis euboea Heldr. (τσάι Εύβοιας). Συγκεκριμένα με βάση τον Γκόλιαρη (1999) αυτοφύονται στις εξής περιοχές:

 Τσάι Βλάχικο (Sideritis athoa Papan. & Kokkini.) Αυτοφύεται στον Άθω, στην Πίνδο και στα ορεινά του νησιού Σαμοθράκη.

- Τσάι του Μαλεβού ή τσάι Ταΰγετου (Sideritis clandestina Chaub & Bory)
 Αυτοφύεται πάνω στους βράχους, στις υπαλπικές και αλπικές περιοχές του Μαλεβού, του Ταΰγετου και της Κυλλήνης.
- Τσάι του Ολύμπου. (Sideritis scardica Griseb.). Αυτοφύτεαι σε βραχώδη εδάφη της υπαλπικής ζώνης του Ολύμπου, Κίσαβου, Πηλίου και Σκάρδου.
- Τσάι του Παρνασσού ή τσάι του βελουχιού (Sideritis raeseri Boiss & Heldr.). Αυτοφύεται στον Παρνασσό, Τυμφρηστό (Βελούχι) και σε άλλα βουνά της Αιτωλίας, Δωρίδας και Φθιώτιδας.
- Τσάι της Κρήτης (Sideritis syriaca L.) γνωστό ως Μαλοτήρα ή Καλοκοιμηθιά. Αυτοφύεται στα ψηλά βουνά της Κρήτης και κυρίως στα Λευκά Όρη και τον Ψηλορείτη.
- 6. Τσάι της Εύβοιας. (Sideritis euboea Heldr.) ή τσάι απ' το Δέλφι. Αυτοφύεται άφθονο στο βουνό Δίρφυ σε υψόμετρο 1000-1500μ. (Διάσελο Δίρφυς, Σκοτεινή, Σέτα, Στρόπωνες, Μετόχι κ.λ.π.). Επίσης υπάρχει στο Ξεροβούνι Εύβοιας.

Οι ξηροί ανθοφόροι βλαστοί του χρησιμοποιούνται για την παρασκευή ροφήματος. Επειδή τις τελευταίες δεκαετίες αυξήθηκε η κατανάλωση αυτών των ροφημάτων και οι παραγωγοί δυσκολεύονταν να ικανοποιήσουν τις ανάγκες της αγοράς σε τσάι του βουνού από τα αυτοφυή φυτά, αναγκάστηκαν να το καλλιεργήσουν. Σύμφωνα με τον Γκόλιαρη (1984) καλλιεργούνται γύρω στα 3.000 στρέμματα στα χωριά Βρύναινα,. Αγ. Ιωάννης, Κοκκωτοί Μαγνησίας και Κουφοί, που βρίσκονται στο βουνό Ορθρυς του Ν. Μαγνησίας, καθώς και στη Μεταμόρφωση του Ν. Κοζάνης.

Έτσι άρχισε η συστηματική του καλλιέργεια και η προσπάθεια βελτίωσης των αρχικών γενοτύπων. Για το λόγο αυτό δημιουργήθηκαν διειδικά υβρίδια, υπέρτερα σε απόδοση και ποιότητα από τους τοπικούς πληθυσμούς, προκειμένου να καλλιεργηθούν και να αξιοποιήσουν τις φτωχές ημιορεινές περιοχές της χώρας μας.

1.4 Χρήσεις και σημασία του

Τα τελευταία χρόνια παρατηρείται διεθνώς μια στροφή στη χρήση φυσικών προϊόντων ιδιαίτερα στον τομέα των φαρμάκων, καλλυντικών και τροφίμων. Είναι χαρακτηριστικό το γεγονός ότι πολλά φάρμακα που κυκλοφορούν έχουν συστατικά φυτικής προέλευσης. Παράλληλα με τη συστηματική και σε βάθος έρευνα για τη μελέτη της χημικής σύστασης, της βιολογικής δράσης ή της βελτίωσης της ποιότητας, γίνεται ιδιαίτερη προσπάθεια σε διεθνή κλίμακα για την ανακάλυψη νέων φυτών - πηγών διαφόρων συστατικών - που μπορεί να έχουν φαρμακευτική ή βιομηχανική χρήση.

Τα είδη Sideritis χρησιμοποιούνται παραδοσιακά ως αφεψήματα, βελτιωτικά γεύσης ή για θεραπευτικούς σκοπούς. Οι περισσότερες από τις θεραπευτικές χρήσεις του Sideritis sp. περιορίζονται στη λαϊκή ιατρική, αν και αξίζει να σημειωθεί ότι ολοένα και πιο συχνή γίνεται η παρουσία του Sideritis sp. σε βότανα της αγοράς με αποτέλεσμα την αύξηση του αριθμού των συνταγών που περιέχουν το είδος του Sideritis. Οι διαφορές χρήσεις του Sideritis που έχουν παρατηρηθεί εξαρτώνται από το είδος και από την περιοχή που αναπτύσσονται. Ωστόσο, οι χρήσεις σε όλο τον κόσμο με βάση τις ιδιότητες των φυτών Εκτός από τις γνωστές χρήσεις του, που παρατίθενται παρακάτω, χρησιμοποιείται επίσης συχνά ως διακοσμητικό φυτό σε βραχόκηπους (Gonzalez-Burgos et al., 2011).

Οι περισσότερες από τις ενώσεις που απομονώνονται από το Sideritis και μερικά παράγωγά τους έχουν δείξει ότι διαθέτουν διαφορετικού τύπου βιολογικές ιδιότητες, συμπεριλαμβανομένου ιδιότητες όπως αναλγητικές, αντι-φλεγμονώδεις, κυτταροστατικές, αντιΐκές, αντιβακτηριακές, αντιμικροβιακές και αντιοξειδωτικές (Ghoumari et al.2005).

Τα είδη του Sideritis χρησιμοποιούνται στην Ελλάδα και στην Ανατολή ευρύτατα σαν αρωματικά και θερμαντικά ροφήματα, ιδιαίτερα κατά τους χειμερινούς μήνες με το κοινο όνομα «τσάι του βουνού». (Basile et al. 2005) Η εκτεταμένη κατανάλωση του Sideritis ως παραδοσιακό ελληνικό τσάι, έχει δημιουργήσει την ανάγκη για καλλιέργεια του φυτού, εφόσον η αυτοφυή παραγωγή του δεν επαρκεί για να καλύψει τις αυξημένες ανάγκες. Για το λόγο αυτό, στις μέρες μας τα φυτά του γένους Sideritis καλλιεργούνται σε χαμηλής γονιμότητας λοφώδεις και ορεινές περιοχές, σε υψόμετρο πάνω από 1.000 μέτρα.

1.5 Χημική σύσταση του Sideritis

1.5.1 Πρωτογενείς μεταβολίτες

Όσον αφορά τη χημική σύσταση του φυτού Sideritis και συγκεκριμμένα τη σύσταση τους σε πρωτογενείς μεταβολίτες, οι γνώσεις μας είναι σχετικά περιορισμένες. Παρόλο που η χρήση του εντοπίζεται ακόμα και στη χώρα μας από αρχαιοτάτων χρόνων, μια

σφαιρική αποψη για το ποιά είναι τελικά η χημική σύσταση του Sideritis μπορεί κάποιος να τη διαπιστώσει μόνο με βάση τα εμπορικά σκευάσματα που κυκλοφορούν.

Στο πίνακα 1.2 δίνεται η διατροφική αξία 100 g εμπορικού σκευάσματος Sideritis. Από το πίνακα 1.2 φαίνεται πως είναι ένα φυτό πλούσιο σε υδατάνθρακες συμπεριλαμβανομένου και των εδώδιμων ινών που βρίσκονται σε μεγαλύτερη αναλογία.

Ενέργεια	121 Kcal	Λιπαρά	3
Πρωτεΐνες	13	Κορεσμένα	0
Υδατάνθρακες	12	Εδώδιμες Ίνες	59
Σάκχαρα	0	Νάτριο	0.002

Πίνακας 1.2 Διατροφική αξία % (w/w) εμπορικού σκευάσματος Sideritis

Οι εδώδιμες ίνες είναι υδατανθρακούχες ουσίες, συστατικά τροφών φυτικής προέλευσης που δεν μπορούν να πεφθούν ή να απορροφηθούν στο λεπτό έντερο, περνώντας σχεδόν ανέπαφες στο παχύ έντερο. Αυτές εντοπίζονται στα τοιχώματα φυτικών κυττάρων και είναι ιδιαίτερα σημαντικό γιατί περισσότερο από το 95% των συστατικών του είναι διαιτητικές ίνες. Γενικότερα ως φυτικές ίνες έχουν χαρακτηριστεί η κυτταρίνη, η ημικυτταρίνη, η πηκτίνη, η λιγνίνη, τα κόμμεα, οι β-γλυκάνες, οι φρουκτάνες, τα ανθεκτικά αμύλα, η χιτίνη, η χιτοσάνη, το ψύλλιο, η πολυδεξτρόζη, η πολυόλη και οι ανθεκτικές δεξτρίνες. (Asp NG 1995)

1.5.2 Δευτερογενείς μεταβολίτες

Όσον αφορά αντίθετα τους δευτερογενείς ματαβολίτες του φυτού φαίνεται πως τα τελευταία 20 χρόνια γίνεται προσπάθεια απομόνωσης και ταυτοποίησης των συστατικών αυτών από διάφορα είδη του *Sideritis*, με σκοπό τον εντοπισμό των κυριότερων ουσιών που παρουσιάζουν βοτανικό και φαρμακολογικό ενδιαφέρον.

Τα συστατικά αυτά μελετώνται ως προς τη δομή και τη δράση αλλά ταυτόχρονα αποτελούν ένα καλό χημειοταξινομικό δείκτη για την αναγνώριση και ταξινόμησης των ειδών όπως αναφέρθηκε και παραπάνω. Στη σύσταση τους απαντώνται ενώσεις που ανήκουν στα πτητικά μονοτερπένια, τα οποία συναποτελούν με σεσκιτερπένια το αιθέριο έλαιο των φυτών, διτερπένια, τριτερπένια, στερόλες, κουμαρίνες, λιγνάνες, φλαβονοειδή και άλλες κατηγορίες ίσως μικρότερης σημασίας και περιέκτικότητας. Τα διτερπένια, τα φλαβονοειδή και το αιθέριο έλαιο βρίσκονται σε κάθε φυτό του γένους *Sideritis*, μιας και ευθύνονται για τις φαρμακολογικές του ιδιότητες.

1.5.2.1 Αιθέριο έλαιο

Τα αιθέρια έλαια αποτελούν σύνθετα μιγμάτα πτητικών ενώσεων με ισχυρό άρωμα, που συντίθενται σε διάφορα φυτικά όργανα. Αυτές οι ουσίες ανήκουν στην ομάδα των τερπενίων (μονοτερπένια, σεσκιτερπένια και πιθανόν διτερπένια με διαφορετικές ομάδες από αλειφατικούς υδρογονάνθρακες, οξέα, αλκοόλες, αλδεΰδες, άκυκλους εστέρες ή λακτόνες) (Ballester-Costa et al., 2013).

Πολλά είδη της οικογένειας Lamiaceae είναι γνωστά για τη πλούσια σε περιεκτικότητα τους σε αιθέρια έλαια. Παρά το γεγονός ότι το εν λόγω είδος του Sideritis δεν είναι ανάμεσά σε αυτά, πολλές μελέτες σχετικά με τα αιθέρια έλαια τους έχουν πραγματοποιηθεί. Συγκεκριμένα οι Aligianis et al. (2001) στη μελέτη τους εντοπίζουν τις εξής αποδόσεις σε πέντε ελληνικά είδη : 0.19% (S. syriaca subsp. syriaca), 0.12% (S. raeseri subsp. raeseri), 0.26% (S. clandestina subsp. clandestina), 0.37% (S. raeseri subsp. attica) και 0.40% (S. sipylea). Παρά την μικρή συγκέντρωση των συστατικών αιθερίου ελαίου στο Sideritis, ο S. scardica π.χ χρησιμοποιείται ως τσάι με ένα πολύ ευχάριστο άρωμα. Από την άλλη πλευρά, το αιθέριο έλαιο είναι ένα σημαντικό χαρακτηριστικό για τα φυτά λόγω της βιολογικής τους δραστηριότητας και για χημοταξονομικά σκοπούς (Todorova and Trendafilova, 2014).

Τα αιθέρια έλαια διαφόρων ειδών του γένους Sideritis έχουν μελετηθεί εκτεταμένα για τα περιεχόμενα πτητικά συστατικά τους, που παρουσιάζουν βοτανικό και φαρμακολογικό ενδιαφέρον. Το γένος Sideritis είναι δύσκολο να ταξινομηθεί γιατί αρκετά είδη εμφανίζουν ισχυρή τάση προς υβριδοποίηση. Μερικά από τα συστατικά που απαντούν στα αιθέρια έλαια αποτελούν καλούς χημειοταξινομικούς δείκτες ενώ άλλα εμφανίζουν φαρμακολογικές ιδιότητες, κύρια αντιμικροβιακές (Tsibranska et al, 2011). Τα αιθέρια έλαια διαφόρων ειδών και υβριδίων του γένους Sideritis έχουν αναλυθεί και τα πτητικά συστατικά που βρέθηκαν περιλαμβάνουν κατατάσσονται σε τέσσερεις ομάδες: μονοτερπενικούς υδρογονάνθρακες, οξυγονούχα μονοτερπένια, σεσκιτερπενικούς υδρογονάνθρακες, οξυγονούχα σεσκιτερπένια, καθώς και διάφορες άλλες πτητικές ενώσεις που συμπαραλαμβάνονται από τα αιθέρια έλαια.

Μια παρεμφέρη ομαδοποίηση των αιθέριων ελαίων του Sideritis έλαβαν υπόψιν τους οι Gonzalez-Burgos et al., (2011) από τις μελέτες των Baser (2002) και Kirimer et al. (2004), που το κατατάσσουν στις εξής οκτώ ομάδες: "μονοτερπένια πλούσια σε υδρογονάνθρακες", " πλούσια οξυγονωμένα μονοτερπένια ", "σεσκιτερπένια πλούσια σε υδρογονάνθρακες", " πλούσια οξυγονωμένα σεσκιτερπένια ", " πλούσια διτερπένια " και "άλλα".

Επιπλέον, οι Kirimer et. al (2004) καθιέρωσαν μια συσχέτιση μεταξύ της απόδοσης του αιθέριου ελαίου και των βασικών ομάδων των συστατικών ειδών του *Sideritis* της Τουρκία. Όσο υψηλότερη είναι η απόδοση σε έλαιο, τόσο υψηλότερη η περιεκτικότητα μονοτερπενίων σε υδρογονάνθρακες και όσο χαμηλότερη είναι η απόδοση σε έλαιο, τοσο μεγαλύτερη είναι η περιεκτικότητα του σε σεσκιτερπένια. Η περιεκτικότητα των διτερπενίων δεν συσχετίζεται με την απόδοση (Gonzalez-Burgos et al., 2011).

Με βάση τις παραπάνω ομάδες οι ελληνικές ποικιλίες βάση μελετών κατατάσσονται ως εξής` Τα είδη S. sipylea, Sideritis scardica Griseb. subsp. scardica και Sideritis clandestina (Bory & Chaub) Hayek subsp. clandestina είναι πλούσια σε υδρογονανθρακικά μονοτερπένια (α- και β- πινένιο), ενώ το S. raeseri subsp. raeseri παρόλο που είναι πλούσιο σε μονοτερπενικούς υδρογονάνθρακες, το α- και β- πινένιο δεν αποτελούν τα κύρια μονοτερπένια. Το S. syriaca L. σε σχεση με τα άλλα έχει το μικρότερο ποσοστό σε μονοτερπενικούς υδρογονάνθρακες, ενώ το Sideritis euboea Heldr. είναι το μόνο που έχει τόση απόκλιση από την ομάδα Empedoclia και διαθέτει μόνο 4.8% μονοτερπένια , 55.4% σεσκιτερπένια και 21.7% διτερπένια (Aligiannis et al.2001, Koedam 1986, Koutsaviti et al. 2013, Ozcan et al. 2001, Tadić et al. 2012).

1.5.2.2 Τερπένια

Η κατηγορία των τερπενίων σύμφωνα με μελέτες έχει αποτελέσει όχι λίγες φορές αντικείμενο ερευνών, δίνοντας μας πληροφορίες για τη δομή τους και τη περιεκτικότητα τους στα εκχυλίσματα των φυτών. Από τη βιβλιογραφία προκύπτει το συμπέρασμα ότι στα υπέργεια τμήματα των φυτών συντίθεται όλες σχεδόν οι δομές των τερπενίων, από τα μονοτερπενια και τα σεσκιτερπένια, τα οποία αναφέρθηκαν στα αιθέρια έλαια, αλλα και τα άκυκλα διτερπένια, τα λαβδάνια, τα καουρένια, τα τετρακυκλικά εως τα πεντακυκλικά διτερπένια και τα τριτερπένια.

Στο γένος Sideritis spp. σεσκιτερπένια και τριτερπένια δεν απαντώνται τόσο συχνά. Παρόλα αυτά στο Sideritis scardica εντοπίστηκαν τα τριτερπενοειδή (αμυρίνη, ουρσολικό οξύ, ολεανολικο οξύ) (Todorova and Trendafilova 2014). Αντιθέτως, τα είδη Sideritis είναι πλούσια σε διτερπένια. Έχουν ταυτοποιηθεί και απομονωθεί από τα εναέρια τμήματα του φυτού Sideritis τουλάχιστον 160 διαφορετικές διτερπένια με αξιοσημείωτη δομική μεταβλητότητα. Τα πρώτα διτερπένια ανιχνεύθηκαν στο Sideritis italica με τη σιδεριόλη και τη σιδερόλη να αποτελούν τις πρώτες απομονωμένες και ταυτοποιημένες δομές διτερπενίων. Μέχρι σήμερα, ένας σημαντικός αριθμός από μελέτες έχουν αναφέρει την παρουσία των διτερπενοειδών, ειδικά σε αυτά τα φυτά που αναπτύσσονται στην Ιβηρική Χερσόνησο και τις Κανάριες Νήσους (Gonzalez-Burgos et al., 2011).

Η περιγραφή των διτερπενίων γίνεται πιο αντιληπτή σύμφωνα με βάση τις διαφορές που παρουσιάζουν στον ανθρακικό σκελετό τους (λαβδάνιο, πιμαρένιο, καουρένιο, ατισένιο, μπεγιερένιο, τραχιλοβένιο, ροζένιο και αβιτένιο) με τα περισσότερα να αποδίδουν και την εναντιομερή τους διαμόρφωση. Τα πιο απαντημένα του γένους είναι στην ομάδα των καουρενίων (σιδερόλη, σιδεροξόλη, η καντόλη Α και Β, επικαντικαντιόλη, καντικατιόλη και η φολιόλη, η λινεαρόλη), λαβδανίου (βογατριόλη), μπεγιερενίου (τομπαρόλη), ροζενίου (λαγασκατριόλη) και ατισενίου (σεραδιόλη) (Rahman 2006).

Οι διτερπενικές ενώσεις που απομονώθηκαν από τα διάφορα είδη του γένους Sideritis στη Μεσόγειο περιλαμβάνουν παράγωγα λαβδανίου και των οξειδίων του λαβδανίου, των ενατιομερών του ατισενίου, καουρενίου, μπεΰερενίου, ενώ ο Fraga (2012) αναφέρει και τα παράγωγα των εναντιομερών του πιμαρενίου και ροζενίου. Μια ανάλυση των διτερπενοειδών στη περιοχή της Κεντρικής και Ανατολικής Μεσογείου (Τουρκία, Ελλάδα, Ιταλία) αντίθετα δείχνει πως τα συγκεκριμένα είδη περιέχουν σχεδόν αποκλειστικά διτερπένια καουρενίου και πως τα είδη των περιοχών της δυτικής Μεσογείου και της Μακαρονησίας περιέχουν διτερπένια (εναντιομερών καουρενίου, λαβδανίου, ατισενίου, μπεΰερενίου, πιμαρενίου, ροζενίου και τραχιλοβενίου).

12

1.5.2.4. Πολυφαινόλες

Το γένος του *Sideritis* είναι πλούσια πηγή φαινολικών ενώσεων και κυρίως φλαβονοειδών. Εκτενείς μελέτές έχουν διεξαχθει τα τελευταία χρόνια για τον προσδιορισμό της περιεκτικότητας των φλαβονοειδών στη Μεσόγειο και στον Αντλατικό μιας και αποτελούν καλούς ταξινομικούς δείκτες και χρησιμοποιούνται για τη διάκριση ειδών και ιδιαίτερα υβριδίων του γένους (Gonzalez-Burgos et al., 2011).

Είδη της ομάδας Sideritis χαρακτηρίζεται από συσσώρευση των 7-γλυκοσιδίων 8υδροξυφλαβόνης, ενώ στην ομάδα της *Hesiodia* συσσωρεύονται τα 7-γλυκοσίδια των κοινών φλαβονών, όπως η απιγενίνη, η λουτεολίνη και η χρυσεριόλη. Η φυλογενετική συσχέτιση των ομάδων και της παραγωγής επιδερμικών φλαβονοειδών τεκμηριώθηκε με βάση τη θεώρηση ότι τα πιο εξελιγμένα είδη διαθέτουν επιδερμικά (Fraga 2012).

Οι φαινολικές ενώσεις τείνουν να είναι υδατοδιαλυτές επειδή έχουν την τάση συχνά συνδυάζονται με σάκχαρα ως γλυκοζίτες και συνήθως βρίσκονται στο χυμοτόπιο των κυττάρων (Jordan et al 2009). Τα φλαβονοειδή διακρίνονται:1) στα εξωτερικά, που είναι άγλυκα με λιπόφιλες ιδιότητες, και 2) στα εσωτερικά, που είναι γλυκοζίτες με υδρόφιλες ιδιότητες. Γενικά, το άγλυκο μέρος θεωρείται ως πιο αξιόπιστος ταξινομικος δείκτης. Συγκεκριμένα σύμφωνα με τον Fraga (2012) τα άγλυκα μέρη που έχουν ανιχνευθεί στο *S. euboea Helder* είναι η καμφερόλη και στο *S. raeseri Boiss. et Heldr.* και στο *S. syriaca L.* η ισοσκουτελεραεϊνη, η απιγενίνη και το π- κουμαρικό.

2. Υπέρυθρη Φασματοσκοπία και Χημειομετρία

2.1 Εισαγωγή

Η φασματοσκοπία υπερύθρου (Infra-red, IR) αποτελεί μια από τις διαδεδομένες φασματοσκοπικές τεχνικές. Με την ανάλυση της υπέρυθρης ακτινοβολίας δύναται ο ποσοτικός και ο ποιοτικός προσδιορισμός ενός άγνωστου δείγματος, με αποτέλεσμα ποικίλων εφαρμογών της μεθόδου.

Η υπέρυθρη περιοχή του ηλεκτρομαγνητικού φάσματος, όπως φαίνεται 2.1 και από την εικόνα βρίσκεται μεταξύ της περιοχής του ορατού και των μικροκυμάτων. Η υπέρυθρη με τη σειρά της χωρίζεται σε τρεις κατηγορίες:

- εγγύς υπέρυθρη (Near IR, NIR), (13.300-4.000 cm⁻¹)
- μέσω υπέρυθρη (Mid IR,MID), (4.000-400 cm⁻¹)

3. άπω υπέρυθρη (Far IR, FIR), (400-10 cm⁻¹) (Smith 2011)

Η μέσω υπέρυθρη είναι η πιο διαδεδομένη περιοχή ανάλυσης μιας και μεταξύ της περιοχής 4.000 και 600 cm⁻¹ απορροφούν ακτινοβολία όλες σχεδόν οι οργανικές και ανόργανες ενώσεις (Πολυσίου και Ταραντίλης, 2008).

2.2 Βασικές αρχές

Η απορρόφηση της υπέρυθρης ακτινοβολίας από ένα μόριο στη υπέρυθρη περιοχή του ηλεκτρομαγνητικού φάσματος προκαλεί διεγέρσεις στις δονήσεις των ατόμων ομόσθενων δεσμών σε υψηλότερες στάθμες που είναι κβαντισμένες.

Προϋπόθεση για να απορροφηθεί ακτινοβολία από από ένα μόριο στη περιοχή αυτή είναι:

η συχνότητα προσπίπτουσας ακτινοβολίας να ισούται με τη συχνότητα δόνησης
 ή περιστροφής των ατόμων του μορίου

 να μεταβάλλεται η διπολική ροπή του δεσμού κατά τη διάρκεια της δόνησης. Σε διαφορετική περίπτωση η δόνηση θεωρείται ανενεργή στο υπέρυθρο (π.χ. συμμετρικά μόρια)

Οι δονήσεις αυτές διακρίνονται σε δονήσεις τάσης και κάμψης των δεσμών (Εικόνα 2.2).

- δονήσεις τάσης: μεταβολή στο μήκος δεσμού που ενώνει τα άτομα χωρίς να αλλάζει η κατεύθυνση ή γωνία τους. Διακρίνονται στις μεμονωμένες και στις συζευγμένες (συμμετρικές – symmetric stretch ή ασύμμετρες– asymmetric stretch)
- δονήσεις κάμψης: μεταβολή μόνο της γωνίας των δεσμών. Με τη σειρά τους διακρίνονται στις δονήσεις (ψαλιδισμού- scissoring ή παραμόρφωσης, αιώρησηςwagging, σείσης-rocking, και στρέψης ή συστροφής-twisting)

Εικόνα 2.2 Είδη παραμόρφωσης της δομή των μορίων

Η υπέρυθρη ακτινοβολία μπορεί να ξεχωρίζει τους διαφορετικούς συνδυασμούς δύο όμοιων ατόμων. Αυτό εξηγείται από το γεγονός ότι όσο αυξάνεται η σταθερά δύναμης ενός δεσμού τόσο αυξάνεται και η συχνότητα δόνησης των ατόμων του. Επομένως υπάρχει δυνατότητα διερεύνησης των μοριακών δονήσεων και κατ΄ επέκταση δυνατότητα ταυτοποίησης της δομής μιας ουσίας.

Σε ένα τυπικό φάσμα υπέρυθρης φασματοσκοπίας διακρίνονται δύο περιοχές:

1. περιοχή χαρακτηριστικών ομάδων (4.000 -1.400 cm⁻¹), οι ζώνες απορρόφησης της οφείλονται σε δονήσεις ομάδων μορίων

 περιοχή δακτυλικών αποτυπωμάτων (1.400-400 cm⁻¹), οι ζώνες απορρόφησης της οφείλονται σε δονήσεις ολόκληρου του μορίου (Πολυσίου και Ταραντίλης, 2008).

2.3 Φασματοφωτοσκοπία FT-IR

(Fourier Transform Infrared spectroscopy)

Η υπέρυθρη φασματοσκοπία FT-IR αποτελεί ένα ειδικό τύπο της υπέρυθρης ακτινοβολίας. Η FT-IR παρουσιάζει πλεονεκτήματα σε σύγκριση με άλλους τύπους υπερύθρων φασματοσκοπικών μεθόδων Η χρήση της είναι τόσο διαδεδομένη, που αποτελεί συνώνυμο του όρου της φασμασματοσκοπίας υπερύθρου.

Η φασματοσκοπία IR χρησιμοποιείται κυρίως στην περιοχή 4000-650 cm⁻¹, Στην περιοχή όμως αυτή η ευαισθησία του φασματοφωτομέτρου IR είναι περιορισμένη και οι εντάσεις των απορροφήσεων πολύ μικρές, με αποτέλεσμα ο "θόρυβος" να σκεπάζει τις ταινίες απορρόφησης. Ως «θόρυβος» εννοούνται όλα εκείνα τα σήματα τα οποία καταγράφονται και δεν ανταποκρίνονται σε πραγματικές απορροφήσεις του δείγματος αλλά σε άλλους λόγους. Η αδυναμία των κοινών φασματοφωτομέτρων IR υπερνικήθηκε με τη χρήση του FT-IR.

2.3.1 Μετασχηματισμός Fourier

Η ανάλυση κατά Fourier ή μετασχηματισμός Fourier είναι η ανάλυση μιας μαθηματικής συνάρτησης. Ο μετασχηματισμός Fourier είναι ένα μαθηματικό «εργαλέιο» με τη βοήθεια του οποίου το συμβολόγραμμα μετασχηματίζεται ξανά σε συνάρτηση κυματαριθμών με βάση την εξίσωση 2.1.

$$B(\overline{\nu}) = \int_{-\infty}^{+\infty} I(\delta) e^{-i2\pi\overline{\nu}} d\delta$$
(2.1)

Όπου B(v) η συνάρτηση των κυματαριθμώ, όπως αυτοί εκπέμπονται αποτην πηγή και I(δ) η συνάρτηση της καθυστέρησης.

Συγκεκριμένα όλα ξεκινούν από το σήμα της πηγής υπέρυθρου. Το σήμα της πηγής υπερύθρου είναι μια συνάρτηση συχνοτήτων. Όταν το σήμα εισέλθει στο συμβολόμετρο υπόκειται συμβολή. Η συμβολή αυτή εξαρτάται από την καθυστέρηση του κινούμενου

κατόπτρου. Επομένως το συμβολόγραμμα είναι συνάρτηση αυτής της καθυστέρησης. Ο μετασχηματισμός Fourier μετασχηματίζει το συμβολόγραμμα σε συνάρτηση κυματαριθμών.

Ουσιαστικά με το μετασχηματισμό Fourier προκύπτουν όλες οι συχνότητες της περιοχής του υπέρυθρου φάσματος που μελετάται. Δηλαδή τα κενά των συχνοτήτων που απορροφήθηκαν από το δείγμα (μερικά ή ολικά) μετασχηματίζονται μαζί με τις συχνότητες που δεν απορροφήθηκαν σε τυπικό IR φάσμα (Ταραντίλης και Πολυσίου 2008)

2.4 Οργανολογία φασματοφωτόμετρου FT-IR

Ένα τυπικό φασματοφωτόμετρο IR μετασχηματισμού Fourier (Εικόνα 2.3) αποτελείται από τα εξής κύρια τμήματα:

 πηγή IR (IR source): Η πλέον γνωστή πηγή ακτινοβολίας για συστήματα μικρού κόστους είναι η λυχνία νικελίου

 χρωμίου (Nicrome), με μικρή ισχύ και αερόψυκτη. Αναπτύσσει θερμοκρασία
 1200–1250 °C και εκπέμπει συνεχή ακτινοβολία στην περιοχή του μέσο υπερύθρου. Το μειονέκτημά της είναι ότι έχει μικρή σταθερότητα και σχετικά μικρή περίοδο ζωής.

- πηγή λέιζερ (Laser): Η παραγωγή της ακτίνας λέιζερ γίνεται με τη διέγερση ατόμων ηλίου και νέου (HeNe). Ο ρόλος της είναι να ελέγχει την διαδρομή της προσπίπτουσα ακτινοβολίας κατά τη διάρκεια της σάρωσης.
- 3. συμβολόμετρο Michelson (Interferometer): Το συμβολόμετρο αποτελείται από μια ημιδιάφανη πλάκα διαχωριστή που δεν απορροφά στο υπέρυθρο και δύο κάτοπτρα, το ένα εκ των οποίων είναι κινούμενο. Το συμβολόμετρο Michelson επι της ουσίας είναι μια διάταξη οπτικών που χωρίζει μια δέσμη ακτινοβολίας σε δύο δέσμες και τις επανασυνθέτει, αφού πρώτα ακολουθήσουν ξεχωριστές διαδρομές που διαφέρουν στο μήκος. Οι μεταβολές της έντασης της επαλληλίας των δύο δεσμών ακτινοβολίας, ως συνάρτηση της διαφοράς των οπτικών

διαδρομών καταγράφονται από έναν ανιχνευτή. Χάριν στο συμβολόμετρο τα φασματοφωτόμετρο εξετάζουν πολλά σημεία του φάσματος

4. ανιχνευτή (Detector): καταγράφει την υπέρυθρη ακτινοβολία που διέρχεται μέσα από το δείγμα. Ο πιο κοινός ανιχνευτής είναι ο θερμικός κατασκευασμένος από δευτεριωμένη θειική τριγλυκερίνη (DTGS). Η αρχή λειτουργίας του DTGS βασίζεται στην αύξηση της θερμοκρασίας του , η οποία με τη σειρά της δημιουργεί μια διαφορά δυναμικού.

Το τελικό φάσμα που προκύπτει είναι αποτέλεσμα του μέσου όρου των επαναλήψεων των σαρώσεων που έχουν εκτελεστεί (Πολυσίου και Ταραντίλης, 2008).

2.5 Πλεονεκτήματα της FT-IR

Η υπέρυθρη φασματοσκοπία FT- IR αποτελεί ένα ειδικό τύπο της υπέρυθρης ακτινοβολίας. Επομένως, η FT-IR παρουσιάζει πλεονεκτήματα και μειονεκτήματα σε σύγκριση με άλλους τύπους υπερύθρων φασματοσκοπικών μεθόδων πέραν αυτών που παρουσιάζονται παραπάνω. Για τη σύγκριση της μεθόδου με διαφορετικού τύπου φασματοσκοπικές μεθόδους χρήσιμος δείκτης αποτελεί η φασματοσκοπική παράμετρος SNR = Signal-to-Noise Ratio, που προσδιορίζεται από την εξίσωση 2.2.

SNR = Σήμα / Θόρυβος

(2.2)

Πίνακας 2.1 Πλεονεκτήματα IR (Smith 2011)

Πλεονεκτήματα		
σχεδόν καθολική	εύχρηστη γρήγορη οικονομική	
υψηλη ευαισθησια ακρίβεια	περισσοτερες εφαρμογες φάσματα πλούσια σε πληροφορίες	
επαναληψιμότητα		

Ένα από τα πιο σημαντικά πλεονεκτήματα της FT- IR είναι ότι διαθέτει υψηλές τιμές SNR., λόγω μεγαλύτερης απόδοσης σήματος. Το χαρακτηριστικό αυτό αποδίδει στη μέθοδο και τα υπόλοιπα πλεονεκτήματα που διαθέτει σε σχέση με τους άλλους τύπους

υπέρυθρης φασματοσκοπίας. Τα πλεονεκτήματα αυτά είναι η μεγαλύτερη ακρίβεια και επαναληψιμότητα και κατ΄επέκταση περισσότερες εφαρμογές της μεθόδου (Smith 2011). Τα πλεονεκτήματα της μεθόδου συνοψίζονται στον Πίνακα 2.1 που παρατίθεται παρακάτω.

2.6 Εφαρμογές του φασματοφωτόμετρου FT-IR στον χώρο της βιομηχανίας

Τα τελευταία χρόνια στο χώρο της βιομηχανίας γίνεται εκτενής χρήση της φασματοσκοπίας FT-IR και αυτό γιατί αυτή η τεχνική δίνει πληροφορίες που αφορούν τη χημική δομή ενός μορίου σε όποια κατάσταση και να βρίσκεται στερεή , υγρή ή αέρια. Επίσης , όπως έχει αναφερθεί και παραπάνω είναι μια τεχνική εύχρηστη, γρήγορη και οικονομική. Παρόλο το μεγάλο εύρος των οργάνων FT-IR που χρησιμοποιούνται, μπορεί δηλαδή να κυμαίνεται από έναν απλό εξοπλισμό μέχρι ένα πολύπλοκο αυτοματοποιημένο συμβολόμετρο και συμβολογράφημα, συνήθως συνοδεύονται από ένα εύχρηστο λογισμικό.

Επιπλέον αποτελούν ένα χρήσιμο εργαλείο σε τομείς όπως η διασφάλιση ποιότητας πρόληψη κινδύνων κατά τον ποιοτικό έλεγχο, περιβάλλον, σε αναλύσεις (ποιοτικές και ποσοτικές) και στην έρευνα και ανάπτυξη. Οι τομείς εφαρμογής της μεθόδου είναι κυρίως σε βιομηχανίες με αντικείμενο τη χημεία των πλαστικών, του φυσικού αερίου και του πετρελαίου, σε βιομηχανίες φαρμάκου, αλλά και σε βιομηχανίες που ασχολούνται με υλικά, τρόφιμα, εξορύξεις και γεωργικά προϊόντα.

Η χρήση του φασματοφωτόμετρου FT-IR στον τομέα της βιομηχανίας, χρονολογείται από την περίοδο του 2^{ου} Παγκοσμίου Πολέμου, σχεδόν δηλαδή αυτόματα με την εισαγωγή της στην αγορά. Τη δεκαετία του 80' φαίνεται ότι η χρήση φασματοσκοπία FT-IR παρουσιάζει μια άνοδο και κυρίως στο τομέα του ποιοτικού ελέγχου (Gilbert, Beckenham, 1999).

2.7 Φασματοσκοπία FT-IR με την τεχνική της διάχυτης ανάκλασης (Diffuse Reflectance Fourier Transformed Infrared Spectroscopy – DRIFTS)

Η τεχνική διάχυτης ανάκλασης χρησιμοποιείται κυρίως για την απόκτηση φασμάτων IR από στερεά δείγματα, που βρίσκονται σε μορφή σκόνης. Η χρήση της μεθόδου DRIFTS τα τελευταία χρόνια είναι όλο και πιο συχνή, γιατί είναι μια μέθοδος εύχρηστη και γρήγορη και δεν απαιτεί ουσιαστική κατεργασία του δείγματος. Για τη λήψη των φασμάτων χρησιμοποιείται ειδικό εξάρτημα για την υποδοχή του δείγματος (Εικόνα 2.4). Ο χώρος όπου τοποθετείται το δείγμα (υποδοχέας- Εικόνα 2.4) μπορεί να είναι δύο μεγεθών. Ο μεγαλύτερος έχει διάμετρο 13 mm και ύψος 2 mm ενώ ο μικρός 3 και 2 mm αντίστοιχα (Εικόνα 2.6). Το εξάρτημα αυτό διαθέτει έξι κάτοπτρα. Τα κάτοπτρα M1, M2 και M3 εστιάζουν τη δέσμη της ακτινοβολίας που έρχεται από το συμβολόμετρο επάνω στο δείγμα, ενώ τα M4, Ms και M6 εστιάζουν την ανακλώμενη ακτινοβολία από το δείγμα προς τον ανιχνευτή (Εικόνα 2.5).

Εικόνα 2.4: Αριστερά: ειδικό εξάρτημα για τη λήψη φασμάτων με τη τεχνική DRIFTS, δεξιά: υποδοχέας τοποθέτησης δείγματος, αποτελεί μέρος του ειδικού εξαρτήματος

Η ακτινοβολία που προσπίπτει πάνω στην επιφάνεια του στερεού δείγματος έχει ως

αποτέλεσμα την ύπαρξη τριών ειδών ανακλάσεων:

- 1. η απορροφητική(AR),
- 2. η διαχυτική (DS) και
- 3. η αληθινή ανάκλαση (TS)

(Εικόνα 2.6).

Από τα τρία αυτά είδη ανάκλασης μόνον η απορροφητική περιέχει πληροφορίες για το δείγμα και εξαρτάται:

- από το μέγεθος των κόκκων του δείγματος,
- 2. τη μετωπική επιφάνεια και την πυκνότητα πακεταρίσματος του δείγματος,
- 3. το δείκτη διάθλασης του δείγματος καθώς και από
- 4. τη γωνία πρόσπτωσης της ακτινοβολίας επάνω στο δείγμα.

Η ποιότητα του φάσματος που λαμβάνεται μετά την κάθε ανάλυση είναι ανάλογη του μεγέθους των σωματιδίων του δείγματος. Όταν το μέγεθος των σωματιδίων είναι μεγάλο επικρατεί το φαινόμενο της σκέδασης της ακτινοβολίας με αποτέλεσμα να αυξάνεται ο θόρυβος και να μειώνεται σημαντικά η ένταση των απορροφήσεων εξαιτίας του μειωμένου ποσού ακτινοβολίας που διεισδύει στο δείγμα. Ιδανικό είναι το μέγεθος το οποίο είναι μικρότερο του μήκους κύματος της ακτινοβολίας που χρησιμοποιείται. (Πολυσίου και Ταραντίλης 2008)

2.8 Θεωρία Kubelka-Munk

Τα τελευταία χρόνια έχουν διεξαχθεί μελέτες που εισάγουν τη λεγόμενη θεωρία Kubelka-Munk κατά τη χημειομετρική ανάλυση των φασμάτων DRIFTS. Η θεωρία του Kubelka-Munk στόχο έχει τη βελτιστοποίηση της μεθόδου FT-IR, όσον αφορά τη ποιότητα του φάσματος σε σχέση με το μέγεθος των σωματιδίων του προς ανάλυση δείγματος. Σε αντίθεση με άλλα μοντέλα που βασίζονται σε βασικές οπτικές ιδιότητες του

Εικόνα 2.6: Τα τρία είδη ανάκλασης IR σε στερεό δείγμα με μορφή σκόνης

(Πολυσίου και Ταραντίλης, 2008)

δείγματος η θεωρία Kubelka- Munk θεωρεί το δείγμα ως ένα συνεχές μέσο. Ο αλγόριθμος Kubelka- Munk βασίζεται στο νόμο Lambert-Beer και επι της ουσίας δείχνει τη σχέση του συντελεστή απορρόφησης (α) και του συντελεστής σκέδασης (S). Η εξίσωση Kubelka- Munk (2.3) δίνεται παρακάτω:

$$F(R) = \alpha/S = (1-R)^2/2R$$
(2.3)

, όπου α είναι ο συντελεστής απορρόφησης, S είναι συντελεστής σκέδασης, R είναι ανάκλαση,

Μελέτες δείχνουν τη συσχέτιση μεταξύ του συντελεστής σκέδασης (S) και του μεγέθους των σωματιδίων. Το μοντέλο χρησιμοποιείται ευρέως στην ποιοτική και ποσοτική ανάλυση φασματοσκοπικών δεδομένων της διάχυτης ανάκλασης υπερύθρων με στόχο την απόδοση αποτελεσμάτων μεγαλύτερης επαναληψιμότητας και ακρίβειας. (Christy et al., 1993, Christy et al. 1995, Greene et al. 2004, Otsuka 2004).

2.7 Χημειομετρία

Η Χημειομετρία αποτελεί διεπιστημονικό κλάδο της Στατιστικής και της Χημείας. Πιο συγκεκριμένα, με βάση τον Wold et al., 1995, χημειομετρία είναι ο κλάδος της χημείας που ασχολείται με την ανάλυση χημικών δεδομένων (εξαγωγή πληροφοριών από τα δεδομένα) και τη διασφάλιση ότι τα πειραματικά δεδομένα περιέχουν το μέγιστο αριθμό πληροφοριών (το σχεδιασμό των πειραμάτων), (O Wold είναι ο πρώτος που εισήγαγε την έννοια της χημειομετρίας).

Η χημειομετρία εφαρμόζεται για την επίλυση προβλημάτων τόσο περιγραφικών όσο και προβλεπόμενων. Στις περιγραφικές εφαρμογές οι ιδιότητες των χημικών συστημάτων διαμορφώνονται με την πρόθεση της εκμάθησης των βασικών σχέσεων και της δομής του συστήματος(μοντέλο κατανόησης και ταυτοποίησης). Στις προβλεπόμενες εφαρμογές οι ιδιότητες των χημικών συστημάτων διαμορφώνονται με την πρόθεση της προβλεψης νέων ιδιοτήτων ή συμπεριφοράς ή ενδιαφέροντος. Και στις δυο περιπτώσεις οι σειρές δεδομένων μπορεί να είναι μικρές, αλλά είναι συχνά πολύ μεγάλες και εξαιρετικά πολύπλοκες συμπεριλαμβανομένου των εκατοντάδων έως χιλιάδων περιπτώσεων ή παρατηρήσεων.

Οι χημειομετρικές τεχνικές χρησιμοποιούνται σε μεγάλο βαθμό και ιδιαίτερα στην αναλυτική χημεία. Με τη σειρά τους οι αναπτυγμένες και βελτιωμένες χημειομετρικές μέθοδοι ανάλυσης συνεχίζουν να προωθούν την εξέλιξη της τεχνολογίας σε αναλυτικά όργανα και μεθοδολογία, με σκοπό τη συνεχή ανάπτυξη της χημειομετρικής θεωρίας και την ανάπτυξη εφαρμογών τους.

Η πολυπαραγοντική ανάλυση είναι από τις πιο διαδεδομένες εφαρμογές της χημειομετρίας. Τα δεδομένα που προκύπτουν από τεχνικές όπως των IR και UV είναι συχνά εύκολο να απαριθμηθούν μεταξύ των χιλιάδων μετρήσεων ανά δείγμα. Αντίστοιχα τα δεδομένα της φασματομετρίας μάζας, του πυρηνικού μαγνητικού συντονισμού, της ατομικής εκπομπής/ απορρόφησης και των πειραμάτων χρωματογραφίας είναι επίσης όλα από τη φύση τους πολυπαραγοντικά. Ένα είδος πολυπαραγοντικής ανάλυσης είναι η Διαχωριστική Ανάλυση (Disciminant Analysis).

2.9 FT-IR και προσδιορισμός γεωγραφικής προέλευσης

Τα τελευταία χρόνια εξαιτίας της ραγδαίας ανάπτυξης της παραγωγής και της εξέλιξης της επιστήμης της τεχνολογία τροφίμων γίνεται πιο επιτακτική η ανάγκη αναζήτησης τροφίμων με υψηλότερες ποιοτικές προδιαγραφές. (Bassbasi et al. 2014) Η ανάγκη αυτή αφορά και τους παραγωγούς και τους καταναλωτές. Η ένδειξη της γεωγραφικής προέλευσης ενός προϊόντος αποτελεί κριτήριο επιλογής και ιδιαίτερα για τα για επονομαζόμενα Π.Ο.Π (Προϊόν Ονομασίας Προέλευσης) προϊόντα. Η ψευδής χρήση των γεωγραφικών ενδείξεων από μη εξουσιοδοτημένους παραγωγούς ή έμπορους είναι επιζήμια τόσο για τους καταναλωτές όσο και τους νόμιμους παραγωγούς.

Έτσι λοιπόν έχουν διεξαχθεί μελέτες, που προσπαθούν να αναπτύξουν όσο το δυνατόν νέες τεχνικές για τον προσδιορισμό της γεωγραφικής προέλευσης γεωργικών και κτηνοτροφικών προϊόντων.

Η φασματοσκοπία FT-IR αποτελεί μια από τις τεχνικές αυτές. Βάσει τελευταίων μελετών φαίνεται πως η μέθοδος παίρνει σημαντικό έδαφος έναντι άλλων μεθόδων γεωγραφικής ταξινόμησης εξαιτίας των πλεονεκτημάτων που παρουσιάζει. Η μέθοδος έχει εφαρμοστεί με επιτυχία για τον προσδιορισμό της γεωγραφικής προέλευσης σε εξαιρετικά παρθένα ελαιόλαδα (S. Caetano et al, 2007), σε τυριά (Karoui et al., 2004), σε μέλι (Ruoff et al., 2006), σε φακές. (Kouvoutsakis et al., 2014) και βούτυρα. (Bassbasi et

al. 2014). Επίσης έχει χρησιμοποιηθεί για να την ταξινόμηση ποτών (κρασί, brandy, κ.α) (M. Palma & C.G. Barroso, 2002).

Σκοπός της μελέτης

Κατά τη διάρκεια της ιστορικής εξέλιξης, έχουν γίνει πολλές προσπάθειες για την ταξινόμηση του γένους *Sideritis*. Ο βαθμός πολυμορφισμού, η παρουσία της διακύμανσης οικοτύπου και ο συχνός υβριδισμός μεταξύ των ειδών, καθιστά δύσκολη την ταξινόμηση του γένους. Η κατάταξη του μέχρις στιγμής βασίζεται στα μορφολογικά, κυτταρολογικά, παλυνολογικά, γενετικά και χημικά χαρακτηριστικά του.

Το αυξημένο καταναλωτικό ενδιαφέρον στην αναζήτηση τροφίμων με πιστοποίησηεπιβεβαίωση της γεωγραφικής καταγωγής. εχει οδηγήσει την επιστημονική κοινότητα στην ανάγκη της γεωγραφικής ταυτοποίησης με γρήγορους, εύκολους και αξιόπιστους εργαστηριακούς μεθόδους που θα δώσουν απάντηση σε αυτό το ζητούμενο. Σκοπός λοιπόν της συγκεκριμμένης μελέτης είναι η γεωγραφική και βοτανική ταξινόμηση του γένους με μια μέθοδο εύκολη στη χρήση, σχετικά οικονομική, γρήγορη και αξιόπιστη.

Η μέθοδος φασματοσκοπίας FT-IR με την τεχνική της διάχυτης ανάκλασης (DRIFTS), σε συνδυασμό με την χημειομετρία, εκπληρώνει όλους τους παραπάνω όρους και επιπλέον έχει χρησιμοποιηθεί με επιτυχία σε πολλές αντίστοιχες αναλύσεις.

3. Υλικά και μέθοδοι

3.1 Φυτικό υλικό-προετοιμασία δείγματος

Στη παρούσα μελέτη συλλέχθηκαν φυτά του γένους *Sideritis* απο 26 διαφορετικές περιοχές του ελλαδικού χώρου. Με τη βοήθεια βοτανικού Κοράκη Γεώργιου έγινε η βοτανική ταξινόμηση του φυτού κάθε περιοχής. Στην εικόνα 3.1 φαίνονται οι περιοχές συλλογής του φυτικού μας υλικού και στο πίνακα 3.1 οι περιοχές συλλογής του φυτικού υλικού καθώς και η αντίστοιχη βοτανική τους ταξινόμηση.

Πίνακας 3.1 Περιοχές συλλογής και βοτανική ταξινόμηση φυτικού υλικού

A/A	Προέλευση	Είδος (taxa)
1	Σαμοθράκη	Sideritis raeseri Boiss. & Heldr. subsp. raeseri
2	Καρπενήσι	Sideritis raeseri Boiss. & Heldr. subsp. raeseri
3	Βρύναινα (Μαγνησία)	Sideritis raeseri Boiss. & Heldr. subsp. raeseri
4	Όλυμπος	Sideritis scardica Griseb.
5	Παγγαίο	Sideritis scardica Griseb.
6	Κρήτη	Sideritis syriaca L. subsp. Syriaca
7	Δίρφυς- Εύβοια	Sideritis euboea Heldr.
8	Φλώρινα-Φιλιώτας	Sideritis scardica Griseb.
9	Θεσπρωτία- Αυλότοπος (Σούλι)	Sideritis raeseri Boiss. & Heldr. subsp. raeseri
10	Τσεπέλοβο (Ιωάννινα)	Sideritis raeseri Boiss. & Heldr. subsp. raeseri
11	Τύμφη (Ιωάννινα)	Sideritis raeseri Boiss. & Heldr. subsp. raeseri
12	Αλωνίσταινα (Αρκαδία)	Sideritis clandestina subsp. peloponnesiaca
13	Μυτιλήνη (Αγιασός)	Sideritis sipylea
14	Χελμός (Ντουρντουβάνα)	Sideritis clandestina subsp. peloponnesiaca
15	Χελμός (Μαύρο-ύδατα στυγός)	Sideritis clandestina subsp. peloponnesiaca
16	Αρμανίτσα (Πρέβεζα)	Sideritis raeseri Boiss. & Heldr. subsp. raeseri
17	Ανατολικό Μαίναλο Βυτίνα (Αρκαδία)	Sideritis clandestina subsp. peloponnesiaca
18	Ανάβρα-Όρθυς (Μαγνησία)	Sideritis scardica Griseb.
19	Τζουμέρκα-Συρράκο (Ιωάννινα)	Sideritis raeseri Boiss. & Heldr. subsp. raeseri

20	Ταΰγετος (Μάνη)	Sideritis clandestina (Bory & Chaub) Hayek subsp. clandestina
21	Αγραφα-Χωριό Θραψίμι(Καρδίτσα)	Sideritis scardica Griseb.
22	Τσάι Φαλακρού (άγριο)	Sideritis scardica Griseb.
23	Τσάι Εύβοιας (άγριο)	Sideritis euboea Heldr.
24	Τσάι Πάρνωνα(άγριο)	Sideritis clandestina (Bory & Chaub) Hayek subsp. clandestina
25	Λάμπεια Όρη- Δίβρη(Ηλεία)	Sideritis clandestina subsp. peloponnesiaca
26	Ιεράπετρα-Κρήτη (Μαλοτήρας)	Sideritis syriaca L. subsp. Syriaca

Μετά την παραλαβή του φυτικού υλικού ακολούθησε η προκατεργασία του δείγματος για την περαιτέρω αναλυσή του. Από κάθε φυτό επιλέχθηκε αντιπροσωπευτική ποσότητα των εξής τμημάτων: 1) φύλλων-βρακτίων, 2) στελεχών και 3) άνθεων. Οι τρεις ομάδες τμημάτων του κάθε φυτού τεμαχίστηκαν αρχικά με κοινό οικιακό κόφτη (blender), ενώ στη συνέχεια τοποθετήθηκαν περίπου 0,35 g από το κάθε δείγμα σε σφαιρόμυλο (Retsch MM 2000) για 15 min, 50 στροφές/min, με στόχο να αποκτήσουν λεπτόκοκκη υφή (υφή πούδρας). Τέλος αποθηκεύτηκαν σε φιαλίδια και σε θερμοκρασία δωματίου (απουσία φωτός) μέχρι την ανάλυσή τους. Κάθε φιαλίδιο έφερε μία αρίθμηση-κωδικό, προκειμένου να διευκολυνθεί η πειραματική διαδικασία.

3.2 Μελέτη φυτικού υλικού με τεχνική FT-IR

Μετά την προετοιμασία του φυτικού υλικού ακολούθησε η λήψη των FT-IR φασμάτων των δειγμάτων. Το φασματοφωτόμετρο που χρησιμοποιήθηκε είναι της εταιρείας Thermo Electron Corporation, μοντέλο Nicolet 6700 με τα κάτωθι χαρακτηριστικά:

- 1. πηγή ακτινοβολίας IR: λυχνία νικελίου-χρωμίου (NiChrome),
- 2. πηγή λέιζερ: ατόμων ηλίου και νέου (HeNe),
- 3. ανιχνευτής: DGTS
- 4. λογισμικό: ΟΜΝΙC 7.3

3.2.1. Καταγραφή φασμάτων

Η λήψη του φάσματος πραγματοποιήθηκε με την τεχνική DRIFTS. Αφού τοποθετήθηκε το ειδικό εξάρτημα στο όργανο, τοποθετήθηκε το δείγμα στον ειδικό υποδοχέα. Η λήψη του φάσματος κάθε δείγματος διήρκησε περίπου 3-5 min έπειτα από 100 σαρώσεις του δείγματος και με διαχωριστική ικανότητα 4 cm⁻¹. Για κάθε δείγμα λήφθηκαν τρία επιμέρους δείγματα και καταγράφηκαν τα φάσματά τους (τρεις επαναλήψεις -τριπλότυπα δείγματα). Πριν από την έναρξη λήψης των φασμάτων αλλά και μετά την καταγραφή των τριπλότυπων φασμάτων καταγράφονταν φάσμα υποβάθρου αναφοράς με χρήση βρωμιούχου καλίου, έτσι ώστε να περιοριστούν τα σφάλματα εξαιτίας των απορροφήσεων του διοξειδίου του άνθρακα και της υγρασίας του περιβάλλοντος.

3.2.2. Επεξεργασία φασμάτων

Μετά τη λήψη των φασμάτων ακολούθησε η επεξεργασία τους με χρήση του λογισμικού του οργάνου. Η επεξεργασία περιελάμβανε τα παρακάτω στάδια:

- αποκοπή της φασματικής περιοχής 2390-2280 cm⁻¹, στην οποία απορροφά διοξειδίου του άνθρακα,
- 2. η εξομάλυνσή (smoothing) τους ,
- 3. διόρθωση της βασικής γραμμής του φάσματος (baseline correct),
- 4. υπολογισμός του μέσου όρου των φασμάτων κάθε τριπλέτας.
- η κανονικοποίηση της κλίμακά τους (normalize scale) ή μετασχηματισμός τους με τη χρήση του αλγόριθμου Kubelka-Munk.

3.3 Στατιστική ανάλυση

Τα βελτιωμένα φάσματα που έχουν προκύψει μετά την ανάλυση με τη μέθοδο FT-IR (τα smoothed με ή χωρίς τη μέθοδο Kubelka Munk και τα normalized) αναλύονται στατιστικά με τη χρήση του λογισμικού TQ Analyst Professional Edition (7.2.0.161 Release, Thermo Electron Corp.). Το λογισμικό αυτό βασίζεται στην χημειομετρία και συγκεκριμένα στη Διαχωριστική Ανάλυση (Discriminant Analysis) των δειγμάτων. Ο στόχος της διαχωριστικής ανάλυσης είναι διπλός. Αρχικά επιδιώκει να διακρίνει έναν πληθυσμό σε ευδιάκριτα σύνολα (ομάδες) και στη συνέχεια προσπαθεί να ταξινομήσει τις παρατηρήσεις στα σύνολα αυτά. Στο προκειμένο πείραμα βασίζεται στη στη βοτανική διαφοροποίηση μεταξύ των ειδών/υποειδών της ποικιλίας και στη γεωγραφική διαφοροποίηση ανάμεσα στα δείγματα του ίδιου είδους/ υποείδους της ποικιλίας.

Η διαδικασία για την εισαγωγή και επεξεργασία στοιχείων (φασμάτων) στο λογισμικό TQ Analyst πραγματοποιείται ξεχωριστά για κάθε διαφορετικό τμήμα του φυτού (φυλλαβράκτια, στελέχη και άνθη) και για κάθε διαφορετικά «βελτιωμένο φάσμα» (smoothed με ή χωρίς τη μέθοδο Kubelka - Munk και κανονικοποίησης) και ακολουθεί τα εξής βήματα:

Βήμα 1°: Επιλογή της μεθόδου

To Apple to the state of the st	
The Edit View Disconsting Window Help	
Calibrate Guantity Explain Close Performance Index: N/A	Previous: N/A
Description Falldenigth Classes Standards Regions Other	Report
Suggest How To	
Method Title	
Apalusis Tupe	
Quantitative analysis	Επιλογη
C Simple Beer's law	
 Classical least squares (CLS) 	Discriminant
Partial least squares (PLS)	Discriminant
🦳 Principal component regression (PCR)	
C Undecided	Analysis
Classification	Allarysis
C Similarity match	
Oiscriminant analysis	
C Search standards	11
· Medicalement only	

Βήμα 2°: Επιλογή επιθυμητού μήκους της στατιστικής διαδρομή

🧔 TQ Analyst - [New M	ethod]			
ဩ File Edit View Diagno:	itics Window Help			
Calibrate Quantify	Explain Close Perform	ance Index: N//	A Previous: N/A	Uncalibrated
Description Pathlength	Classes Standards Reg	ions – Other	Report	
Open Standard Collec	tion Parameters Collect Standard.	View Standa	rds	(
Standards				Επιλογή
Show spectrum title:	8			
Show spectrum filer	ames			Constant
🔲 Restrict Y-axis range	e for calibration and diagnostics			
0.000 St	art 1,500 End			1 <i>7</i>
Standards Table				
Index Display	Spectrum Title	Usage	Class	
1 66		Calibration 👻	0	
	-			

🄯 TQ Analyst - [New Method]
🔯 File Edit View Diagnostics Window Help
Calibrate Quantify Explain Close Performance Index: N/A Previous: N/A Uncalibrated
Description Pathlength Classes Standards Regions Other Report
Suggest Edit Region
Pathlength Type
🕫 Constant
C Peak ratio (A/b=c)
C Multiplicative Signal Correction (MSC)

Στην περίπτωση της παρούσας μελέτης διεξήχθησαν δύο πειράματα στατικής ανάλυσης με τις εξής ομάδες:

- γεωγραφική ταξινόμηση (Μακεδονία, Ήπειρος, Θεσσαλία, Πελοπόννησος, Εύβοια, Μυτιλήνη, Κρήτη)
- βοτανική ταξινόμηση (Sideritis clandestina subsp. Peloponnesiaca, Sideritis raeseri Boiss. & Heldr. subsp. Raeseri, Sideritis scardica Griseb., Sideritis clandestina (Bory & Chaub) Hayek subsp. Clandestina, Sideritis syriaca L. subsp. Syriaca, Sideritis euboea Heldr, Sideritis sipylea)

Βήμα 4°: Εισαγωγή των φασμάτων του κάθε δείγματος.

🧔 TQ	Analy	/st - [New Me	thod]						
🔯 File	Edit	View Diagnost	tics Window	Help					
Calib	rate	Quantify	Explain	Close Pe	erformance Inc	dex: N/A Pre	evious: N/A	Uncalibr	ated
Descript	tivn 🔪	Pathlength	Classes	Standards	Regions	Other	Report		
Cla	sses 1	í able							
	Index	Class	Name	Abbrev.					
	1								

Στο σημείο αυτό χαρακτηρίζουμε κάθε δείγμα με την ομάδα στην οποία ανήκει.

Βήμα 5°: επιλογή της περιοχής(της ζώνης απορρόφησης και του τύπου της προκειμένης περιοχής- 1^{ης} ή 2^{ης} παραγώγου ή χωρίς χρήση παραγώγου) του φάσματος βάσει της οποίας θα γίνει η διαχωριστική ανάλυση.

Βήμα 6°: αξιολόγηση παραμέτρων της διαχωριστικής ανάλυσης

Σε περίπτωση που το αποτέλεσμα δεν είναι το επιθυμητό, τότε επιλέγεται διαφορετική περιοχή του φάσματος, με σκοπό την απόκτηση της βέλτιστης διαφορορποιήσης μεταξύ των δειγμάτων.

3.4 Ανάλυση κύριων συνιστωσών (PCA-Principal Component Analysis)

Η PCA είναι μια μέθοδος που μειώνει τις διαστάσεις των δεδομένων από τα αρκετα εκατοντάδες σημεία δεδομένων μιας φασματικής ρυθμισης σε έναν μικρότερο αριθμό διαστάσεων, και αποτελεί μια αξόπιστη μέθοδος που σκοπό έχει την απόκτηση μεγαλύτερου μέρους των δεδομένων προκειμένου να ανιχνεύσει τις εσωτερικες ομάδες. Η διακύμανση κάθε φάσματος σε σχέση με το μέσο όρο του πληθυσμού μπορεί να απεικονιστεί στη συνέχεια ως ένα μικρότερο σύνολο τιμών (αξόνων) που ονομάζεται PC (principal components). Δύναται να υπολογισθεί φάσματικής διακύμανσης σε σχεση με όλα τα δεδομένα.

Η PCA που σχετίζεται με FT-IR φασματοσκοπίας έχει αποδειχθεί ότι είναι ένα σημαντικό εργαλείο για την ταχεία αναγνώριση και ταξινόμηση (Alonso-Simon et al. 2004).

Για να την επιλογή της επεξεργασίας και μελέτης της καταλληλότερης περιοχής του φάσματος σημαντικό ρόλο κατέχουν οι πληροφορίες που μας παρέχουν τα φάσματα των

συνιστωσών PCA τα οποία συγκεκριμενοποιούν την διαχωριστική ανάλυση. Η μέθοδος της διαχωριστικής ανάλυσης συνθέτει φάσματα κύριων συνιστωσών με σκοπό να περιγράψει το 99,9% της φασματικής μεταβολής σε όλα τα πρότυπα μοντέλα. Με αύτο τον τρόπο δύναται να προσδιοριστει ο άριθμος των κύριων συνιστωσών οι οποίες θα εφαρμοσθούν για την ανάλυση. Το στατιστικό πρόγραμμα λογισμικού TQ Analyst δημιουργεί ένα φάσμα κύριων συνιστωσών (Principal Components Spectrum-PCS) για κάθε PC. Αυτά τα φάσματα δείχνουν πώς οι φασματικές πληροφορίες χρησιμοποιήθηκαν για τη βαθμονόμηση αντιπροσωπεύονται από το PC και πόση από τη συνολική φασματική διακύμανση περιγράφει κάθε PC. Μια PCS είναι ένα ορθογώνιο φάσμα (είναι ένα φάσμα που παριστά μια ανεξάρτητη πηγή διακύμανσης σε μια ομάδα δεδομένων) που αντιπροσωπεύει το ποσό της διακύμανσης που περιγράφεται από τη PC που μετράτε σε όλη την φασματική περιοχή των προτύπων (Kouvoutsakis et al.2014) Οι πηγές της διακύμανσης στα φάσματα βαθμονόμησης αποδίδουν διακριτά γνωρίσματα στα φάσματα των κύριων συνιστωσών, τα οποία διαφαίνονται σαν μια φασματική κορυφή ή σαν κορυφή παραγώγου. Χαρακτηριστικά που υποδηλώνουν θόρυβο ή συνολικά κάποια αισθητά χαρακτηριστικά που εντοπίζονται σε ένα φάσμα κυρίας συνιστώσας υποδηλώνουν ότι αντίστοιχη κύρια συνιστώσα συντελεί ελάχιστα στην εκπόνηση του πρότυπου βαθμονόμησης. Από τα φάσματα των κυρίων συνιστωσών δίνεται ιδιαίτερη βάση στη συχνότητα και την ένταση των απορροφήσεων που εμφανίζονται. Οι περιοχές αυτές λαμβάνονται υπόψιν ως οι πλέον κατάλληλες για να χρησιμοποιηθούν για στην διαχωριστική ανάλυση των δειγμάτων

3.5 Απόσταση Mahalanobis

Ο σκοπός μιας μεθόδου διαχωριστικής ανάλυσης είναι τα τυχόν υποσύνολα ομοίων δειγμάτων να καθοριστούν από έναν αρχικό πληθυσμό εκτελώντας ταυτόχρονα το σύνολο της διαθέσιμης πληροφορίας και όχι επιμέρους ιδιότητες των μελών του πληθυσμού αυτού Η απόσταση Mahalanobis είναι ένα μέγεθος, το οποίο υπολογίζει την απόστασης ενός δείγματος από τον μέσο όρο ενός συνόλου προτύπων σε κάθε ομάδα Ο αλγόριθμος που διατυπώνει την απόσταση Mahalanobis δίδεται από την εξίσωση 3.1:

$$\mathbf{D}^2 = (\mathbf{X} - \mathbf{X}_{avg})\mathbf{T} \mathbf{S}^{-1} (\mathbf{X} - \mathbf{X}_{avg})$$
(3.1)

Όπου: $\mathbf{D} = \eta$ απόσταση (ως ποσοστό), $\mathbf{X} = \delta$ ιανυσματικά δεδομένα (n x 1), $\mathbf{X}_{avg} =$ μέσος όρος διανυσματικών δεδομένων (n x 1), $\mathbf{S} =$ μήτρα συνδιακύμανσης (n x n), ($\mathbf{X} - \mathbf{X}_{avg}$) $\mathbf{T} = \delta$ ηλώνει την μεταβολή του (X – Xavg) και $\mathbf{n} = \mathbf{0}$ αριθμός των δεδομένων του X

4. Αποτελέσματα και Συζήτηση

4.1 Φάσματα FT-IR.

Μετά τη λήψη και επεξεργασία των φασμάτων απορρόφησης του FT-IR 26 φασμάτων για τα φυτικά τμήματα (φύλλα/βράκτια και στελέχη αντίστοιχα) και 25 φασμάτων για το φυτικό τμήμα των άνθεων του γένους *Sideritis* (βήματα που αναφέρονται διεξοδικά στο τρίτο κεφάλαιο- Υλικά και μέθοδοι), ακολούθησε η ερμηνεία των φασμάτων αυτών. Για το φυτικό τμήμα των άνθεων, τα φάσματα ήταν 25 αντι για 26, γιατί δεν εντοπίστηκαν άνθη στο φυτικό υλικό της περιοχής Λάμπεια Όρη της Ηλείας. Στις εικόνες 4.1, 4.2 και 4.3 παρουσιάζονται τα φάσματα απορρόφησης του FT-IR για τη γεωγραφική περιοχή της Σαμοθράκης για τις ομάδες (τμήματα του φυτού) άνθη, φύλλα/βράκτια και στελέχη αντίστοιχα. Τα υπόλοιπα φάσματα, που καταγράφηκαν παρατίθενται χάριν ευκολίας στο Παράρτημα (έκτο κεφάλαιο).

Ένα φάσμα FT-IR διακρίνετα από δύο περιοχές: 1) των δακτυλικών αποτυπωμάτων (4.000-1.500 cm⁻¹) και 2) των χαρακτηριστικών ομάδων(1.500-600 cm⁻¹).

Πριν την ερμηνεία των κορυφών απορρόφησης σε σύγκριση με αποτελέσματα άλλων μελετών, είναι προτιμότερο να εξεταστούν πρώτα με βάσει τη βασική χημική σύσταση του Sideritis. Τα κυρίαρχα συστατικά του Sideritis αποτελούν οι υδατάνθρακες, ακολουθούν οι πρωτεϊνες, ενώ τα λίπη εντοπίζονται μικρότερο ποσοστό. Όσον αφορά τους υδατάνθρακες εντοπίζονται κυρίως οι εδώδιμες ίνες, ενώ χαρακτηρίζονται από απουσία σακχάρων. Σύμφωνα λοιπόν με τη χημική σύσταση του φυτικού υλικού του Sideritis αναμένεται ο εντοπισμός χαρακτηριστικών ομάδων ή ζωνών που υποδηλώνουν την παρουσία πρώτα και κύρια εδώδιμων ινών, όπως η κυτταρίνη, η λιγνίνη, η ημικυτταρίνες και οι πηκτίνες. Εννοείται ότι, όπως σε κάθε βιολογικό δείγμα, υπάρχει η παρουσία DNA και RNA. Αναμένεται λοιπόν στα ληφθέντα φάσματα να αναγνωριστούν κατά κύριο λόγο οι χαρακτηριστικές ομάδες των δομών αυτών.

4.1.2 Ερμηνεία φασμάτων απορρόφησης

Στο πίνακα 4.1 παρουσιάζονται οι απορροφήσεις των φασμάτων της γεωγραφικής περιοχής της Σαμοθράκης με τις αντίστοιχες αποδόσεις τους σύμφωνα με τη βιβλιογραφία. Στο σύνολο των φασμάτων των τριών ομάδων του φυτού (άνθη, φύλλα/βράκτια και στελέχη) εντοπίζονται σχετικά παρόμοιες απορροφήσεις διαφορετικών εντάσεων. Η μόνη διαφορά εντοπίζεται στις περιοχές ~ 1605 cm⁻¹ και ~ 1650 cm⁻¹, όπου στα άνθη εμφανίζονται ως μια πλατιά σχετικά ενιαία κορυφή ενώ στα στελέχη και στα φύλλα εμφανίζονται είτε ως μια πλατιά ενιαιά κορυφή είτε ως δύο πιο διαριτές κορυφές. Η πλατιά αυτή κορυφή, ερμηνεύται ως τη κορυφή που επικαλύπτει τις δύο αυτές κορυφές εξαιτίας του απορροφόμενου νερού που υπάρχει στο φυτικό υλικό μας.

Σύμφωνα με τους Vivekanand et al. 2014 μια πλατιά κορυφή στα ~3400 cm⁻¹, προκαλείται από την παρουσία των ομάδων υδροξυλίου σε αλειφατικές και φαινολικές δομές (δόνηση τάσης –OH). Η απορρόφηση στη περιοχή 2920- 2940 cm⁻¹ σύμφωνα με τους Kouvoutsakis et al. 2014 αποδίδεται στη δόνηση τάσης του C-H.και της 1742-1739 cm^{-1} συσχετιζεται με τη δόνηση τάσης του C=O των εστέρων. Επίσης, είναι γνωστό ότι οι αλκυλεστέρες πηκτινών και οι καρβοξυλικές ομάδες εντοπίζονται σε ζώνες απορρόφησης κοντά στα 1740 cm⁻¹ (Pappas et al. 1998). Όσον αφορά την απορρόφηση γύρω στα 1650 cm^{-1} αποδίδεται στη δόνηση κάμψης του απορροφόμενου νερού (Pappas et al. 2002, Pappas et al. 1998) και στην ύπαρξη του αμιδίου Ι μιας και η απορρόφηση είναι χαρακτηριστική του μορίου (Basbasi et al.2014, Pappas et al. 1998, Schulz et al. 2007). Ασύμμετρη τάση του -COO⁻ παρατηρείται γύρω από τη περιοχή των 1600 cm⁻¹, που οφείλεται στις πηκτίνες συμφωνα με τους Chatjigakis et al. (1998). Χαρακτηριστική κορυφή που αποδίδεται στη λιγνίνη αποτελεί η περιογή των 1506 cm⁻¹, που οφείλεται συγκεκριμένα στη παραμόρφωση αρωματικού δακτυλίου της λιγνίνης (Pappas et al. 1998, Vivekanand et al. 2014). Κάθε φάσμα παρουσιάζει μια κορυφή στη περιοχή 1434-1421 cm⁻¹, που υποδηλώνει τη δόνηση κάμψης CH₂ (Pappas et al. 2002, Schulz et al. 2007), το συνδυασμό της δόνησης παραμόρφωσης του -ΟΗ, τη δόνηση τάσης του C-O των φαινολών, τη δόνηση κάμψης COH των φαινολών και τη συμμετρική τάση δόνησης του $-COO^{-}$, που αποδίδεται στις πηκτίνες (Schulz et al. 2007). Στα 1.374 cm⁻¹ περίπου αποδίδονται δονήσεις κάμψης του CH_2 , που χαρακτηρίζουν τη κυτταρίνη (Alonso-Simon et al. 2004), δονήσεις κάμψης του -OH της κυτταρίνης (Pappas et al. 2002), και δονήσεις τάσης του C-C (Socrates 2001).Η απορρόφηση στα 1335-1321 cm⁻¹ αντιπροσωπεύει τις σκελετικές δονήσεις του C-C και του C-O (Pappas et al. 2002), τη δόνηση κάμψης C-H και τη δόνηση δακτυλίου πολυσακχάρων (Schulz et al. 2007). Η κορυφή στη περιοχή 1249-1229 cm⁻¹ σγετίζεται με την εντός επιπέδου δόνηση κάμψης του -OH της κυτταρίνης (Pappas et al. 2002), εμφανίζει ασύμμετρη τάση του PO₂⁻ των νουκλεϊκών οξέων και δόνηση τάσης του C-O-C των εστέρων. Η απορρόφηση στη περιοχή αυτή χαρακτηρίζει τη λιγνίνη παρουσιάζοντας δόνηση τάσης του C-O των φαινολικών δακτυλίων (Vivekanand et al. 2014). Η περιογή 1169-1162 cm⁻¹ αποδίδεται στη δόνηση τάσης C-O-C γλυκοζιδικού δεσμού της κυτταρίνης (Alonso-Simon et al. 2004) και στη περιοχή γύρω του 1116 cm⁻¹ παρουσιάζει αντισυμμετρική τάση του γλυκοζιδικού δεσμού. Η κορυφή της περιοχής 897 cm⁻¹ είναι χαρακτηριστική του β-γλυκοζιδικού δεσμού και η περιοχή 830-870 cm⁻¹ είναι χαρακτηριστική του α-γλυκοζιδικού δεσμού.

Στον πίνακα 4.1 συνοψίζονται οι αποδόσεις των παραπάνω απορροφήσεων.

			1
Αποδόσεις		Απορροφήσεις φασμά	άτων (cm ⁻¹)
Χαρακτηριστικές απορροφήσεις	Άνθη	Φύλλα- βράκτια	Στελέχη
Τάση –ΟΗ	3.385	3.358	3.377
Τάση C-Η	2.920	2.923	2918
Τάση C=Ο	1.739	1.736	1.740
Κάμψη Η2Ο, αμίδιο Ι	1.650	1.654	1.652
Ασύμμετρη τάση τουCOO	1.606	1.612	1.606
Παραμόρφωση αρωματικού δακτυλίου	1.508	1.511	1.507
Κάμψη CH ₂ , συνδυασμός της δόνησης παραμόρφωσης -ΟΗ, τάσης C-Ο των φαινολών και δόνηση κάμψης COH των φαινολών, συμμετρική τάση του -COO ⁻	1.427	1.431	1.426
Κάμψης CH ₂ , τάση C-C, κάμψης –OH κυτταρίνης	1.374	1.375	1.375
Δονήσεις σκελετού C-C και C-O, κάμψη C-H και δόνηση δακτυλίου πολυσακχάρων	1.324	1.323	1.326
Εντός επιπέδου κάμψη –ΟΗ, δόνηση τάσης C-O των φαινολικών δακτυλίων, ασύμμετρη τάση PO ₂ ⁻ των νουκλεϊκών οξέων, τάση του C-O-C	1.251	1.254	1.248
τάση C-O-C	1.160	1.164	1.164
Αντισυμμετρική τάση του γλυκοζιδικού δεσμού	1.116	1.116	1.120
Δόνηση παραμόρφωσης του C1-Ο σε συνδιασμό τη δόνης κάμψης του –ΟΗ (β-γλυκοζιδικού δεσμού)	900	900	899
Δόνηση παραμόρφωσης του C ₁ -O σε συνδιασμό τη δόνησης κάμψης του -OH (α-γλυκοζιδικού δεσμού)	837	837	836

Πίνακας 4.1 Οι αποδόσεις των φασμάτων απορρόφησης FT-IR της γεωγραφικής περιοχής της Σαμοθράκης

4.2 Στατιστική επεξεργασία των φασμάτων FT-IR

Στην παρούσα μελέτη διεξήχθησαν δύο πειράματα στατικής ανάλυσης με το λογισμικό TQ Analyst με τις εξής ομάδες:

1. γεωγραφική ταξινόμηση

2. βοτανική ταξινόμηση

Η κάθε μια από αυτές τις δύο ομάδες πειραμάτων εξετάστηκε ξεχωριστά στηριζόμενη σε δύο παραμέτρους:

- το είδος επεξεργασίας των φασμάτων απορρόφησης (εξομαλυνση με ή χωρίς τη μέθοδο Kubelka-Munk και κανονικοποίηση) και
- 2. το τμήμα του κάθε φυτού (άνθη, φύλλα/βράκτια και στελέχη)

4.2.1 Διαχωριστική ανάλυση με βάση τη βοτανική ταξινόμηση του Sideritis

Για τη διαχωριστική ανάλυση του *Sideritis* με βάση τη βοτανική ταξινόμηση χρησιμοποιήθηκαν οι εξής κλάσεις-ομάδες:

- 1. Sideritis clandestina subsp. Peloponnesiaca,
- 2. Sideritis raeseri Boiss. & Heldr. subsp. Raeseri,
- 3. Sideritis scardica Griseb.,
- 4. Sideritis clandestina (Bory & Chaub) Hayek subsp. Clandestina,
- 5. Sideritis syriaca L. subsp. Syriaca,
- 6. Sideritis euboea Heldr,
- 7. Sideritis sipylea

4.2.1.1. Διαχωρισμός των εξομαλυνθέντων φασμάτων FT-IR

Τα φάσματα που υπέστησαν εξομάλυνση χωρίς τη μέθοδο Kubelka-Munk εισήχθησαν στο λογισμικό πρόγραμμα TQ Analyst, προκειμένου να υποστούν διαχωριστική ανάλυση με βάση τις κλάσεις που αναφέρονται παραπάνω στο 4.2.1.

4.2.1.1.1 Άνθη

. Οι φασματικές περιοχές που επιλέχθηκαν είναι οι εξής:

- 1.487,14-1.194,57 cm⁻¹ 2. 2^η περιοχή: 1.487-1.194 cm⁻¹ (δεύτερη παράγωγος) (δεύτερηπαράγωγος) 1.0 - Class mean: sideritis cardica 0,8 1.698,17-1.484,92 cm⁻¹ 6,0 0,4 0,2 0,0 1.0 - Class mean: sideritis peloponesiaca 0,8 0,6 0,4 0,2 0,0 1,0 Class mean: sideritis clandestina 0,8 6,0 0,4 0,2 0,0 500 3500 3000 2500 2000 1000
- 1. 1^η περιοχή: 1.698 -1.484 cm⁻¹ και

Εικόνα 4.4 Ενδεικτικές περιοχές επιλογής για τον διαχωρισμό ανάλυσης

1[¶] περιοχή: Σε αυτή την περιοχή εντοπίζονται η απορρόφηση γύρω στα 1650 cm⁻¹, που αποδίδεται στη κάμψη απορροφόμενου νερού (Pappas et al. 2002, Pappas et al. 1998), στη δόνηση τάσης του C=C (Socrates 2001) και στην ύπαρξη του αμιδίου Ι μιας και η απορρόφηση είναι χαρακτηριστική του μορίου (Basbasi et al.2014, Pappas et al. 1998, Schulz et al. 2007). Επίσης παρατηρείται ασύμμετρη τάση του –COO⁻ γύρω από τη περιοχή των 1600 cm⁻¹, που οφείλεται στις πηκτίνες σύμφωνα με τους Chatjigakis et al. (1998). Χαρακτηριστική κορυφή που αποδίδεται στη λιγνίνη αποτελεί η περιοχή των 1506 cm⁻¹, που οφείλεται στη παραμόρφωση αρωματικού δακτυλίου της λιγνίνης (Pappas et al. 1998, Vivekanand et al. 2014).

Η ύπαρξη απορροφόμενου νερού επηρεάζει τη υφή των φασμάτων και συνεπώς ενδέχεται να καλύπτει τις κορυφές άλλων χαρακτηριστικών ομάδων, με αποτέλεσμα να δυσχεραίνει την αποκάλυψη των διαφοροποιήσεων. Επομένως ενδεχομένως επηρεάζει και τη προκειμένη διαχωριστική ανάλυση. 2^{η} περιοχή: Παρουσιάζει μια κορυφή στη περιοχή 1434-1421 cm⁻¹, που υποδηλώνει τη δόνηση κάμψης CH₂ (Pappas et al. 2002, Schulz et al. 2007), το συνδυασμό της δόνησης παραμόρφωσης του –OH, τη δόνηση τάσης του C-O των φαινολών, τη δόνηση κάμψης COH των φαινολών και τη συμμετρική τάση δόνησης του –COO⁻, που αποδίδεται στις πηκτίνες (Schulz et al. 2007). Στα 1.374 cm⁻¹περίπου αποδίδονται δονήσεις κάμψης του CH₂, που χαρακτηρίζουν τη κυτταρίνη (Alonso-Simon et al. 2004), δονήσεις κάμψης του –OH της κυτταρίνης (Pappas et al. 2002), και δονήσεις τάσης του C-C (Socrates 2001). Η απορρόφηση στα 1335-1321 cm⁻¹ αντιπροσωπεύει τις σκελετικές δονήσεις του C-C και του C-O (Pappas et al. 2002), τη δόνηση κάμψης C-H και τη δόνηση δακτυλίου πολυσακχάρων (Schulz et al. 2007). Η κορυφή στη περιοχή 1249-1229 cm⁻¹ σχετίζεται με την εντός επιπέδου δόνησεις κάμψης του -OH της κυτταρίνης (Pappas et al. 2002) και εμφανίζεται ως ασύμμετρη τάση του του PO₂⁻ των νουκλεϊκών οξέων. Η απορρόφηση στη περιοχή αυτή χαρακτηρίζει τη λιγνίνη παρουσιάζοντας δόνηση τάσης του C-O των φαινολικών δακτυλίων (Vivekanand et al. 2014).

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.4 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλην δύο διαχωρίστηκαν πλήρως. Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.1 ανέρχεται στο 92%.

Εικόνα 4.5 Διαχωρισμός των άνθεων εζομαλυνθέντων φασμάτων απορρόφησης με βάση τη βοτανική ταζινόμηση του Sideritis στις περιοχές 1.698 -1.484 cm⁻¹ και 1.487-1.194 cm⁻¹ (δεύτερης παραγώγου)

Τα αποτελέσματα της διαχωριστική ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.2. Στον πίνακα 4.2 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινομησής της. Τά φάσματα 14 και 16 του πίνακα 4.2 είναι τα μόνα που δεν ταξινομήθηκαν επιτυχώς. Η πραγματική κλάση που ανήκουν τα φάσματα 14 και 16 είναι το Sideritis raeseri και το Sideritis scardica αντίστοιχα, ενώ κατατάσσονται στο Sideritis scardica και στο Sideritis raeseri αντίστοιχα.

Spectrum Title Actual Class Calculated Distance Next Next Inde Class Class Distance 1,1173 Taigetos Mani 0,7356 Sideritis 1 sideritis clandestina sideritis sideritis clandestina clandestina syriaca sideritis clandestina 0,7356 sideritis 0,8874 2 Parnwna Agrio sideritis sideritis clandestina clandestina syriaca 3 Alwnistaina- Arkadia sideritis peloponesiaca Sideritis 0,9436 sideritis 1,6047 - sideritis peloponesiaca peloponesiaca syriaca 4 Xelmos- Ntourntouvana sideritis peloponesiaca Sideritis 0,8703 sideritis 1.2334 sideritis peloponesiaca peloponesiaca euboaceae 5 Xelmos- Mauroudata Stugos sideritis peloponesiaca sideritis 0,826 sideritis 0,9168 sideritis peloponesiaca peloponesiaca raeseri 0,7342 sideritis 1.1111 6 Anatoliko Mainalo sideritis peloponesiaca sideritis euboaceae sideritis peloponesiaca peloponesiaca Dirfys -Euvoia Sideritis Sideritis 0,634 sideritis 0,9609 7 sideritis euboaceae euboaceae euboaceae iaca 0,6881 8 Euvoias Agrio Sideritis 0,634 sideritis sideritis sideritis euboaceae scardica euboaceae euboaceae 9 Samothraki Sideritis 1,0877 sideritis 1,2767 sideritis sideritis raeseri raeseri raeseri euboaceae 10 Sideritis Sideritis 1.0237 sideritis 1.1672 Karpenisi sideritis raeseri raeseri raeseri scardica Brynaina- Magnisias 1.1067 sideritis 1,2911 11 Sideritis sideritis sideritis raeseri raeseri raeseri scardica

Πίνακας 4.2 Αποτελέσματα και αποστάσες της διαχωριστικής ανάλυσης

12	Tsepelovo-Iwannina	Sideritis		sideritis	0,6901	sideritis	0,8956
	sideritis raeseri	raeseri		raeseri		euboaceae	
13	Timfi-Iwannina	Sideritis		Sideritis	0,8825	sideritis	0,91
	sideritis raeseri	raeseri		raeseri		euboaceae	
14	Armanitsa Preveza	sideritis	#	sideritis	0,7905	sideritis	0,9442
	sideritis raeseri	raeseri		scardica		raeseri	
15	Tzoumerka-Surrako	sideritis		Sideritis	0,8453	sideritis	1,0769
	sideritis raeseri	raeseri		raeseri		scardica	
16	Olympos	sideritis	#	Sideritis	0.8758	sideritis	0.9198
	sideritis scardica	scardica		raeseri	·	scardica	,
	sidentis scardica	scarcica		1405011		scartica	
17	Paggaio	Sideritis		Sideritis	0,6949	sideritis	0,7578
	sideritis scardica	scardica		scardica		raeseri	
	sideritis scararea	sourdrou		sourcieu		lucion	
18	Flwrina-Filiwtas	Sideritis		sideritis	1,1177	sideritis	1,411
	sideritis scardica	scardica		scardica		raeseri	
				source			
19	Magnisia- Anavra- Orthis	Sideritis		Sideritis	0,8119	sideritis	1,1908
	sideritis scardica	scardica		scardica		raeseri	
20	Agrafa-Thrapsimi-Karditsa	Sideritis		Sideritis	1,0456	sideritis	1,2255
	sideritis scardica.	scardica		scardica		raeseri	
21	Falakrou Agrio sideritis scardi	Sideritis		Sideritis	0,9552	sideritis	1,0471
		scardica		scardica		raeseri	
22	Mutilini-Agiasos	Sideritis		sideritis	0	sideritis	1,7616
	sideritis sipylea	sipylea		sipylea		clandestina	
23	Kriti	sideritis		Sideritis	0,5851	sideritis	0,835
	sideritis syriaca	syriaca		syriaca		clandestina	
24	Ierapetra-Kriti	sideritis		sideritis	0,5851	sideritis	0,8076
	sideritis syriaca	syriaca		syriaca			
						peloponesiaca	
25	Thesprwtia-Aulotopos-Souli	sideritis raeseri		sideritis raeseri	0,8453	sideritis	1,0769
	Sideritis raeseri					scardica	

4.2.1.1.2 Φύλλα/βράκτια

Για τη διεξαγωγή της διαχωριστικής ανάλυσης των φασμάτων τους έγινε η περιοχή των εξής περιοχών:

1. 1^η περιοχή: 1.484-1.297 cm⁻¹

Εικόνα 4.6 Ενδεικτικές περιοχές επιλογής για τον διαχωρισμό ανάλυσης

1[¶] περιοχή: Παρουσιάζει μια κορυφή στη περιοχή 1434-1421 cm⁻¹, που υποδηλώνει τη δόνηση κάμψης CH₂ (Pappas et al. 2002, Schulz et al. 2007), το συνδυασμό της δόνησης παραμόρφωσης του –OH, τη δόνηση τάσης του C-O των φαινολών, τη δόνηση κάμψης COH των φαινολών και τη συμμετρική τάση δόνησης του –COO⁻, που αποδίδεται στις πηκτίνες (Schulz et al. 2007). Στα 1.374 cm⁻¹περίπου αποδίδονται δονήσεις κάμψης του CH₂, που χαρακτηρίζουν τη κυτταρίνη (Alonso-Simon et al. 2004), δονήσεις κάμψης του –OH της κυτταρίνης (Pappas et al. 2002), και δονήσεις τασης του C-C (Socrates 2001). Η απορρόφηση στα 1335-1321 cm⁻¹ αντιπροσωπεύει τις σκελετικές δονήσεις του C-C και του C-O (Pappas et al. 2002), τη δόνηση κάμψης C-H και τη δόνηση δακτυλίου πολυσακχάρων (Schulz et al. 2007). Η κορυφή στη περιοχή 1249-1229 cm⁻¹ σχετίζεται με την εντός επιπέδου δονήσεις κάμψης του -OH της κυτταρίνης (Pappas et al. 2002) και εμφανίζεται ως ασύμμετρη τάση του του PO₂⁻ των νουκλεϊκών οξέων. Η απορρόφηση στη περιοχή αυτή χαρακτηρίζει τη λιγνίνη

παρουσιάζοντας δόνηση τάσης του C-O των φαινολικών δακτυλίων (Vivekanand et al. 2014).

2^η περιοχή: Η περιοχή 1169-1162 cm⁻¹ αποδίδεται στη δόνηση τάσης C-O-C γλυκοζιδικού δεσμού της κυτταρίνης (Alonso-Simon et al. 2004) και στη περιοχή γύρω του 1116 cm⁻¹ παρουσιάζει αντισυμμετρική τάση του γλυκοζιδικού δεσμού

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.7 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλήν δύο διαχωρίστηκαν πλήρως. Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.1 ανέρχεται στο 92,59%.

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.3. Στον πίνακα 4.3 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινόμησής τους. Τα φάσματα 5 και 20 του πίνακα 4.3 είναι τα μόνα που δεν ταξινομήθηκαν επιτυχώς. Η πραγματική κλάση που ανήκουν τα φάσματα 5 και 20 είναι το Sideritis peloponesiaca και το Sideritis scardica αντίστοιχα, ενώ κατατάσσονται στο Sideritis raeseri και στο Sideritis clandestina αντίστοιχα.

alibrate Quantify Explain	Close Performance Ind	ex: N/A Previous: N	/A	Calibr	ated
clandestina	D	о о о	0 0 8	0	 □ X Calibration □ X Validation △ Y Calibration ○ Δ Y Validation ○ Other Calibration ○ Other Validation
			o		δ Δ
۵ <u> </u> ,,,,,,,,,	Distance	to sideritis scardica			

Εικόνα 4.7 Διαχωρισμός των φύλλων/βρακτίων εξομαλυνθέντων φασμάτων απορρόφησης με βάση τη βοτανική ταξινόμηση του Sideritis στις περιοχές 1.484-1.297cm και 1.195-935 (δεύτερη παράγωγος)

Index	Spectrum Title	Actual Class	Calculated	Distance	Next Class	Next
			Class			Distance
1	Taigetos Mani	siderits	siderits	0,4534	sideritis	1,0174
	Sideritis clandestina	clandestina	clandestina		peloponesiaca	
2	Parnwna	Siderits	siderits	0,8956	sideritis	0,9422
	Sideritis clandestina	clandestina	clandestina		peloponesiaca	
3	Alwnistaina-Arkadia	Sideritis	Sideritis	0,7233	sideritis	1,1055
	sideritis	peloponesiaca	peloponesiaca		syriaca	
	peloponesiaca					
4	Xelmos-	sideritis	sideritis	0,7952	siderits	0,8263
	Ntourntouvana	peloponesiaca	peloponesiaca		clandestina	
	sideritis					
	peloponesiaca					
5	Xelmos- Mauroudata	sideritis	sideritis	0,8831	sideritis	0,8861
	Stugos	peloponesiaca	raeseri		peloponesiaca	
	sideritis					
	peloponesiaca					
6	Anatoliko Mainalo	Sideritis	sideritis	0,5797	siderits	0,8057
	sideritis	peloponesiaca	peloponesiaca		clandestina	
	peloponesiaca					
7	Lampeia Ori- Ileia	Siderits	siderits	0,8265	sideritis	1,3972
	sideritis	clandestina	clandestina		peloponesiaca	
	peloponesiaca					
8	Dirfys –Euvoia	Sideritis	sideritis	0,6528	sideritis	1,538
	sideritis euboaceae	euboaceae	euboaceae		sipylea	
9	Euvoias Agrio	Sideritis	sideritis	0,6528	sideritis	0,9485
	sideritis euboaceae	euboaceae	euboaceae		syriaca	
10	Samothraki	Sideritis	sideritis	1,111	sideritis	1,3583
	sideritis raeseri	raeseri	raeseri		scardica	
11	Karpenisi	Sideritis	sideritis	0,883	sideritis	1,1957
	sideritis raeseri	raeseri	raeseri		peloponesiaca	
12	Brynaina- Magnisias	Sideritis	sideritis	0,8206	sideritis	1,1287
	sideritis raeseri	raeseri	raeseri		scardica	
13	Tsepelovo-Iwannina	Sideritis	sideritis	0,7663	sideritis	1,0086
	sideritis raeseri	raeseri	raeseri		scardica	
14	Timfi-Iwannina	Sideritis	sideritis	0,8177	sideritis	1,1554
	sideritis raeseri	raeseri	raeseri		scardica	
15	Armanitsa Preveza	Sideritis	Sideritis	0,9124	sideritis	0,9791
	sideritis raeseri	raeseri	raeseri		peloponesiaca	
16	Tzoumerka-Surrako-	Sideritis	sideritis r	1,0043	sideritis	1,3528
	Iwannina	raeseri	aeseri		scardica	

Πίνακας 4.3 Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

	sideritis raeseri					
17	Paggaio	Sideritis	sideritis	0,6698	sideritis	0,8957
	sideritis scardica	scardica	scardica		raeseri	
18	Olympos	Sideritis	sideritis	0,903	Sideritis	1,2321
	sideritis scardica	scardica	scardica		raeseri	
19	Flwrina- Filiwtas	sideritis	sideritis	1,0231	sideritis	1,1458
	sideritis scardica	scardica	scardica		peloponesiaca	
20	Magnisia- Anavra-	sideritis	siderits	0,7595	sideritis	0,9715
	Orthis	scardica	clandestina		scardica	
	sideritis scardica					
21	Agrafa-Thrapsimi-	sideritis	sideritis	1,1821	sideritis	1,5197
	Karditsa	scardica	scardica		raeseri	
	sideritis scardica					
22	Falakrou Agrio	sideritis	sideritis	1,1442	sideritis	1,5369
	sideritis scardica	scardica	scardica		raeseri	
23	Mutilini-Agiasos	Sideritis	sideritis	0,7579	sideritis	1,5866
	sideritis sipylea	sipylea	sipylea		euboaceae	
24	Kriti	sideritis	sideritis	0,9264	sideritis	1,5338
	sideritis syriaca	syriaca	syriaca		peloponesiaca	
25	Ierapetra-Kriti	sideritis	sideritis	0,9264	sideritis	1,0938
	sideritis syriaca	syriaca	syriaca		peloponesiaca	
26	Thesprwtia-	sideritis	sideritis	0,7546	sideritis	0,8529
	Aulotopos- Souli	raeseri	raeseri		scardica	
	sideritis raeseri					

4.2.1.1.3 Στελέχη

. Οι φασματικές περιοχές που επιλέχθηκαν είναι οι εξής:

- 1. 1^η περιοχή: 1.543 1.296 cm⁻¹ και
- 2. 2^η περιοχή: 1.194 925 cm⁻¹

1η περιοχή: Περιέχει χαρακτηριστική κορυφή που αποδίδεται στη λιγνίνη στη περιοχή γύρω στα 1506 cm⁻¹, (Pappas et al. 1998, Vivekanand et al. 2014). Παρουσιάζει μια κορυφή στη περιοχή 1434-1421 cm⁻¹, που υποδηλώνει την ύπαξη φαινολών και πηκτίνών (Schulz et al. 2007). Στα 1.374 cm⁻¹περίπου αποδίδονται δονήσεις κάμψης του CH₂, που χαρακτηρίζουν τη κυτταρίνη (Alonso-Simon et al. 2004), δονήσεις κάμψης του –ΟΗ της κυτταρίνης (Pappas et al. 2002). Η απορρόφηση στα 1335-1321 cm⁻¹ αντιπροσωπεύει τη δόνηση δακτυλίου πολυσακχάρων (Schulz et al. 2007)

Εικόνα 4.8 Ενδεικτικές περιοχές επιλογής για τον διαχωρισμό ανάλυσης

2^η περιοχή: Η περιοχή 1169-1162 cm⁻¹ αποδίδεται στη δόνηση τάσης C-O-C γλυκοζιδικού δεσμού της κυτταρίνης (Alonso-Simon et al. 2004) και στη περιοχή γύρω του 1116 cm⁻¹ παρουσιάζει αντισυμμετρική τάση του γλυκοζιδικού δεσμού.

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.9 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλην ενός διαχωρίστηκαν πλήρως. Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.1 ανέρχεται στο 96,29%.

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.4. Στον πίνακα 4.4 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινόμησής τους. Το φάσμα 10 του πίνακα 4.4 είναι το μόνο που δεν ταξινομήθηκε επιτυχώς. Η πραγματική κλάση που ανήκει το φάσμα 10 είναι το Sideritis scardica αντίστοιχα, ενώ κατατάσσεται στο Sideritis syriaca. Στις δύο προηγούμενες διαχωριστικές αναλύσεις η αμέσως επόμενη κλάση ταξινόμησης των φασμάτων μη επιτυχούς ταξινόμησης ήταν η πραγματική τους κλάση. Σε αυτή τη διαχωριστική ανάλυση όμως παρατηρείται, πως η επόμενη κλάση ταξινόμησης για το Sideritis scardica είναι στο Sideritis peloponnesiaca.Συγκρίνοντας τα ποσοστά επιτυχούς ταξινόμησης των εξομαλυνθέντων φασμάτων για τα τρία διαφοερτικά τμήματα του φυτικού υλικού(άνθη, φύλλα/βράκτια και στελέχη), παρατηρούμε πως τα στελέχη κατέχουν το μεγαλύτερο ποσοστό.

alibrate Quantify	Explain	Close	Performance	Index: N/A	Previous: N	A		Calibrat	ed
to sidentis candestina				0	ି ୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦	•	0 0 0 0 4	00	
-0,1			Distan	ce to sideritis	scardica			•	l standard(s) misclas

Εικόνα 4.9 Διαχωρισμός των στελεχών εξομαλυνθέντων φασμάτων απορρόφησης με βάση τη βοτανική ταξινόμηση του *Sideritis* στις περιοχές 1.194-925 cm⁻¹ και 1.543 -1.296 cm⁻¹

			Calculated			Next
Index	Spectrum Title	Actual Class	Class	Distance	Next Class	Distance
	Taigetos Mani	sideritis	sideritis		Sideritis	
1		clandestina	clandestina	0,8624	raeseri	1,7145
	Parnwna Agrio	sideritis	sideritis		sideritis	
2		clandestina	clandestina	0,969	euboaceae	1,2443
	Alwnistaina-Arkadia	sideritis	sideritis		sideritis	
3		peloponesiaca	peloponesiaca	0,7076	oaceae	0,7695
	Xelmos- Ntourntouvana	sideritis	sideritis		sideritis	
4		peloponesiaca	peloponesiaca	0,5711	scardica	1,2658
	Xelmos- Mauroudata Stugos	sideritis	sideritis		sideritis	
5		peloponesiaca	peloponesiaca	0,4898	scardica	1,0408
	Anatoliko Mainalo-Butina					
	Arkadia	sideritis	sideritis		sideritis	
6		peloponesiaca	peloponesiaca	0,3607	euboaceae	1,0381
	Lampeia Ori-Ileia	sideritis	sideritis		sideritis	
7		clandestina	clandestina	1,057	sipylea	1,734
	Dirfys -Euvoia	sideritis	sideritis		sideritis r	
8		euboaceae	euboaceae	0,8534	aeseri	1,1092
	Euvoias Agrio	sideritis	sideritis		sideritis	
9		euboaceae	euboaceae	0,8534	peloponesiaca	1,0552
10	Samothraki	sideritis	sideritis	0,6865	sideritis	0,8382

Πίνακας 4.4 Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

		raeseri		raeseri		sipylea	
	Karpenisi	sideritis		sideritis		sideritis	
11		raeseri		raeseri	0,9016	scardica	0,9087
	Brynaina- Magnisias	sideritis		sideritis		sideritis	
12		raeseri		raeseri	1,0429	syriaca	1,3293
	Tsepelovo-Iwannina	sideritis		sideritis		sideritis	
13		raeseri		raeseri	0,6314	scardica	1,0277
	Timfi-Iwannina	sideritis		sideritis		sideritis	
14		raeseri		raeseri	0,6434	euboaceae	0,9594
	Armanitsa Preveza	sideritis		sideritis		sideritis	
15		raeseri		raeseri	1,1395	sipylea	1,1544
	Tzoumerka-Surrako-						
	Iwannina	sideritis		sideritis		sideritis	
16		raeseri		raeseri	1,0833	scardica	1,3652
	Olympos	sideritis		sideritis		sideritis	
17		scardica		scardica	0,7174	raeseri	0,8043
	Paggaio	sideritis		sideritis		sideritis	
18		scardica		scardica	0,8633	raeseri	1,2955
	Flwrina- Filiwtas	sideritis		sideritis		sideritis	
19		scardica		scardica	1,1294	clandestina	1,4611
	Magnisia- Anavra- Orthis	sideritis		sideritis		sideritis	
20		scardica	#	syriaca	0,8414	peloponesiaca	0,9408
	Agrafa-Thrapsimi-Karditsa	sideritis		sideritis		sideritis	
21		scardica		scardica	1,1383	raeseri	1,2933
	Falakrou Agrio	sideritis		sideritis		sideritis	
22		scardica		scardica	1,1498	raeseri	1,4292
	Mutilini-Agiasos	sideritis		sideritis		sideritis	
23		sipylea		sipylea	0,7753	euboaceae	1,0418
	Kriti Stelexi-	sideritis		sideritis		sideritis	
24		syriaca		syriaca	0,7358	sipylea	0,8493
	Ierapetra-Kriti	sideritis		sideritis		Sideritis	
25		syriaca		syriaca	0,7358	raeseri	1,402
	Thesprwtia-Aulotopos- Souli	sideritis		sideritis		sideritis	
26		raeseri		raeseri	0,7397	scardica	0,8607

4.2.1.2. Διαχωρισμός των εξομαλυνθέντων Kubelka-Munk φασμάτων FT-IR

Τα εξομαλυμένα φάσματα που επεξεργάστηκαν με τη μέθοδο Kubelka-Munk εισήχθησαν στο λογισμικό πρόγραμμα TQ Analyst, προκειμένου να υποστούν διαχωριστική ανάλυση με βάση τις κλάσεις που αναφέρονται παραπάνω στο 4.2.1.

4.2.1.2.1 Άνθη

. Οι φασματικές περιοχές που επιλέχθηκαν είναι οι εξής:

1. 1^η περιοχή: 1.486 -1.296 cm⁻¹ και

Εικόνα 4.10 Ενδεικτικές περιοχές επιλογής για τον διαχωρισμό ανάλυσης

1^η περιοχή: Στη περιοχή αυτή εντοπίζεται μια κορυφή στη περιοχή 1434-1421 cm⁻¹, που υποδηλώνει την ύπαρξη πηκτινών (Schulz et al. 2007). Ύπαρξη κυτταρίνης αποδίδεται στη κορυφή απορρόφησης 1.374 cm⁻ (Alonso-Simon et al. 2004, Pappas et al. 2002), ενώ η παρουσία κορυφής απορρόφησης στα 1335-1321 cm⁻¹ υποδηλώνει την ύπαρξη πολυσακχάρων (Schulz et al. 2007).

2^η περιοχή: Η περιοχη 1169-1162 cm⁻¹ αποδίδεται στη δόνηση τάσης C-O-C γλυκοζιδικού δεσμού της κυτταρίνης (Alonso-Simon et al. 2004) και στη περιοχή γύρω του 1116 cm⁻¹ παρουσιάζει αντισυμμετρική τάση του γλυκοζιδικού δεσμού

Εικόνα 4.11 Διαχωρισμός των άνθεων των Kubelka-Munk φασμάτων απορρόφησης με βάση τη βοτανική ταξινόμηση του Sideritis στις περιοχές 1.486 -1.296 cm⁻¹ και 1.193-928 cm⁻¹ (δεύτερη παράγωγος)

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.11 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλην δύο διαχωρίστηκαν πλήρως. Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.1 ανέρχεται στο 92%.

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.5. Στον πίνακα 4.5 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινόμησής τους. Το φάσμα 15 και 17 του πίνακα 4.5 είναι τα μόνα που δεν ταξινομήθηκαν επιτυχώς. Η πραγματική κλάση που ανήκουν τα φάσματα 15 και 17 είναι το *Sideritis raeseri* και το *Sideritis scardica* αντίστοιχα, ενώ κατατάσσονται στο *Sideritis scardica* και στο *Sideritis raeseri* αντίστοιχα. Σε σχέση με τη διαχωριστική ανάλυση που πραγματοποιήθηκε στα εξομαλυμένα φάσματα άνθεων παραπάνω, παρατηρεί κανείς, οτί τα φάσματα που δεν ταξινομήθηκαν επιτυχώς τα φάσματα που δεν παραπάνω, παρατηρεί κανείς τοι τη διαχωριστική ανάλυση δεν ήταν όμοιες, αλλά υπάρχει μια κοινή ζώνη απορρόφησης στα 1 .486 -1.296 cm⁻¹.Όσον αφορά τη διαχωριστική ανάλυση των άνθεων με τη μέθοδο Kubelka-Munk δεν παρατηρείται κάποιο προβάδισμα της μεθόδου σε σχέση με τα ίδια και με τις δύο μεθόδους.

				Colculated			Novt
Index	Spectrum Title	Actual Class		Class	Distance	Next Class	Distance
	Taigetos Mani	sideritis		sideritis		sideritis	
1	sideritis clandestina	clandestina		clandestina	0,7521	syriaca	1,1371
	Parnwna Agrio	sideritis		sideritis		sideritis	
2	sideritis clandestina	clandestina		clandestina	0,7521	syriaca	0,8888
	Alwnistaina- Arkadia	sideritis		sideritis		sideritis	
3	sideritis peloponesiaca	peloponesiaca		peloponesiaca	0,9037	euboaceae	1,5195
	Xelmos- Ntourntouvana	sideritis		sideritis		sideritis	
4	sideritis peloponesiaca	peloponesiaca		peloponesiaca	0,9161	euboaceae	1,2805
	Xelmos- Mauroudata Stugos	sideritis		sideritis		sideritis	
5	sideritis peloponesiaca	peloponesiaca		peloponesiaca	0,8002	raeseri	0,9943
	Anatoliko Mainalo-Butina						
	Arkadia	sideritis		sideritis		sideritis	
6	sideritis peloponesiaca	peloponesiaca		peloponesiaca	0,859	euboaceae	1,1043
	Dirfys -Euvoia	sideritis		sideritis		sideritis	
7	sideritis euboaceae	euboaceae		euboaceae	0,6511	peloponesiaca	0,9643
	Euvoias Agrio	sideritis		sideritis		sideritis	
8	sideritis euboaceae	euboaceae		euboaceae	0,6511	scardica	0,6826
	Samothraki	sideritis		sideritis		sideritis	
9	sideritis raeseri	raeseri		raeseri	1,141	euboaceae	1,2897
	Karpenisi	sideritis		sideritis		sideritis	
10	sideritis raeseri	raeseri		raeseri	0,8261	scardica	0,9948
	Brynaina- Magnisias	sideritis		sideritis		sideritis	
11	sideritis raeseri	raeseri		raeseri	1,09	scardica	1,1936
	Thesprwtia-Aulotopos-						
	Souli	Sideritis		sideritis		sideritis	
12	sideritis raeseri	raeseri		raeseri	0,8472	scardica	0,9312
	Tsepelovo-Iwannina	sideritis		sideritis		sideritis	
13	sideritis raeseri.	raeseri		raeseri	0,7088	peloponesiaca	0,8781
	Timfi-Iwannina	sideritis		sideritis		sideritis	
14	sideritis raeseri	raeseri		raeseri	0,8291	euboaceae	0,9592
	Armanitsa Preveza	sideritis		sideritis		sideritis	
15	sideritis raeseri	raeseri	\diamond	scardica	0,8493	raeseri	0,937
	Tzoumerka-Surrako-						
	Iwannina	sideritis		sideritis		sideritis	
16	sideritis raeseri.	raeseri		raeseri	0,8915	scardica	1,157
	Olympos	sideritis		sideritis		Sideritis	
17	sideritis scardica	scardica	\diamond	raeseri	0,8979	scardica	0,9738
	Paggaio	sideritis		sideritis		Sideritis	
18	sideritis scardica	scardica		scardica	0,7292	raeseri	0,86

Πίνακας 4.5 Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

	Flwrina-Filiwtas	sideritis	sideritis		Sideritis	
19	sideritis scardica	scardica	scardica	1,1359	raeseri	1,4039
	Magnisia- Anavra- Orthis	sideritis	sideritis		sideritis	
20	sideritis scardica	scardica	scardica	0,8534	raeseri	1,2147
	Agrafa-Thrapsimi-Karditsa	sideritis	sideritis		sideritis	
21	sideritis scardica.	scardica	scardica	1,0567	raeseri	1,1951
	Falakrou Agrio	Sideritis	sideritis		sideritis	
22	sideritis scardica	scardica	scardica	1,0339	raeseri	1,1284
	Mutilini-Agiasos	sideritis	sideritis		sideritis	
23	sideritis sipylea	sipylea	sipylea	0	clandestina	1,647
	Kriti	sideritis	sideritis		sideritis	
24	Sideritis syriaca	syriaca	syriaca	0,5244	clandestina	0,8831
	Ierapetra-Kriti	sideritis	sideritis		sideritis	
25	Sideritis syriaca	syriaca	syriaca	0,5244	clandestina	0,8494

4.2.1.2.2. Φύλλα/βράκτια

. Οι φασματικές περιοχές που επιλέχθηκαν είναι οι εξής:

- 1. 1^η περιοχή: 1.488 -1.297 cm⁻¹ και
- 2. 2^η περιοχή: 1.295-931 cm⁻¹ (δεύτερη παράγωγος)

 1^{η} περιοχή: Στη περιοχή αυτή εντοπίζεται μια κορυφή στη περιοχή 1434-1421 cm⁻¹, που υποδηλώνει την ύπαρξη πηκτινών (Schulz et al. 2007). Η παρουσία κυτταρίνης και

πολυσακχάρων συνδέεται με την απορρόφηση στα 1.374 cm⁻¹ και 1335-1321 cm⁻¹ αντίστοιχα (Alonso-Simon et al. 2004, Pappas et al. 2002, Schulz et al. 2007).

 2^{η} περιοχή: Στη περιοχή 1249-1229 cm⁻¹ εντοπίζεται κορυφή απορρόφησης που υποδηλώνει ύπαρξη κυτταρίνης (Pappas et al. 2002), ενώ στη συγκεκριμένη ζώνη απορρόφησης αποδίδεται ασύμμετρη δόνηση τάσης του του PO₂⁻ των νουκλεϊκών οξέων. Επίσης η περιοχή 1169-1162 cm⁻¹ αποδίδεται στη δόνηση τάσης C-O-C γλυκοζιδικού δεσμού της κυτταρίνης (Alonso-Simon et al. 2004) και στα 1.116 cm⁻¹ εντοπίζεται αντισυμμετρική τάση του γλυκοζιδικού δεσμού.

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.13 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλήν δύο διαχωρίστηκαν πλήρως. Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.1 ανέρχεται στο 92,59%.

Εικόνα 4.13 Διαχωρισμός των φύλλων/βρακτίων των Kubelka-Munk φασμάτων απορρόφησης με βάση τη βοτανική ταξινόμηση του Sideritis στις περιοχές 1.488 -1.297 cm-1 και 1.295-931 cm-1 (δεύτερη παράγωγος)

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.6. Στον πίνακα 4.6 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινόμησής τους. Το φάσμα 13 και 21 του πίνακα 4.6 είναι τα μόνα που δεν ταξινομήθηκαν επιτυχώς. Η πραγματική κλάση που ανήκουν τα φάσματα 13 και 21 είναι το Sideritis raeseri και το Sideritis scardica αντίστοιχα, ενώ κατατάσσονται στο Sideritis peloponesiaca και στο Sideritis euboaceae.

Οι ζώνες απορρόφησης που επιλέχθηκαν για τη διαχωριστική ανάλυση φύλλων/ βρακτίων είναι σχεδόν ίδιες με αυτές που επιλέχτηκαν για τα εξομαλυνθέντα φάσματα φύλλων/βρακτίων παραπάνω. Ο αριθμός των «αποτυχημένων» ταξινομήσεων είναι επίσης ίδιος, αλλά τα μη ταξινομημένα φάσματα διαφέρουν στη μία και στην άλλη περίπτωση.

				Calculated			Next
Index	Spectrum Title	Actual Class		Class	Distance	Next Class	Distance
	Taigetos Mani	sideritis		sideritis		sideritis	
1		clandestina		clandestina	0,8669	scardica	1,5771
	Parnwna Agrio	sideritis		sideritis		sideritis	
2		clandestina		clandestina	0,9511	scardica	1,0072
	Lampeia Ori-Ileia	Sideritis		Sideritis		sideritis	
3		clandestina		clandestina	1,0995	scardica	1,6992
	Alwnistaina-Arkadia	sideritis		sideritis		sideritis	
4		peloponesiaca		peloponesiaca	0,3678	raeseri	1,176
	Xelmos-						
	Ntourntouvana	sideritis		sideritis		sideritis	
5		peloponesiaca		peloponesiaca	0,6237	scardica	1,1378
	Xelmos- Mauroudata						
	Stugos	sideritis		sideritis		sideritis	
6		peloponesiaca		peloponesiaca	0,465	raeseri	0,906
	Anatoliko Mainalo-						
	Butina Arkadia	sideritis		sideritis		sideritis	
7		peloponesiaca		peloponesiaca	0,3351	raeseri	1,1582
	Dirfys -Euvoia	sderitis		sderitis		sideritis	
8		euboaceae		euboaceae	0,6988	raeseri	1,357
	Euvoias Agrio	sderitis		sderitis		Sideritis	
9		euboaceae		euboaceae	0,6988	raeseri	1,1788
	Samothraki	sideritis		sideritis		sderitis	
10		raeseri		raeseri	0,626	euboaceae	1,0869
	Karpenisi	sideritis		sideritis		sderitis	
11		raeseri		raeseri	0,7774	euboaceae	0,8689
	Brynaina- Magnisias	sideritis		sideritis		sideritis	
12		raeseri		raeseri	1,0401	syriaca	1,417
	Thesprwtia-	sideritis		sideritis		Sideritis	
13	Aulotopos- Souli	raeseri	>	peloponesiaca	0,8125	raeseri	0,8305

Πίνακας 4.6 Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

55

	Tsepelovo-Iwannina	sideritis		sideritis		sideritis	
14		raeseri		raeseri	0,7969	peloponesiaca	1,0133
	Timfi-Iwannina	sideritis		sideritis		Sideritis	
15		raeseri		raeseri	0,566	scardica	0,9665
	Armanitsa Preveza	sideritis		sideritis		sideritis	
16		raeseri		raeseri	1,0131	scardica	1,1827
	Tzoumerka-Surrako-						
	Iwannina	sideritis		sideritis		sideritis	
17		raeseri		raeseri	1,1853	peloponesiaca	1,8019
	Olympos	sideritis		sideritis		sideritis	
18		scardica		scardica	0,7438	raeseri	1,2689
	Paggaio	Sideritis		sideritis		sideritis r	
19		scardica		scardica	1,1995	raeseri	1,2986
	Flwrina- Filiwtas	sideritis		sideritis		Sideritis	
20		scardica		scardica	1,1147	clandestina	1,2198
	Magnisia- Anavra-						
	Orthis	sideritis		sideritis		sideritis	
21		scardica	>	euboaceae	0,8283	raeseri	1,0416
	Agrafa-Thrapsimi-						
	Karditsa	sideritis		sideritis		sderitis	
22		scardica		scardica	1,0328	euboaceae	1,3387
	Falakrou Agrio	Sideritis		sideritis		sideritis	
23		scardica		scardica	1,0861	clandestina	1,5106
	Mutilini-Agiasos	sideritis		sideritis		sideritis	
24		sipzlea		sipzlea	0,8233	syriaca	1,9762
	Kriti	sideritis		sideritis		sideritis	
25		syriaca		syriaca	0,7537	raeseri	1,2507
	Ierapetra-Kriti	sideritis		sideritis		sideritis	
26		syriaca		syriaca	0,7537	sipzlea	1,4736

4.2.1.2.3. Στελέχη

. Οι φασματική περιοχή που επιλέχθηκε είναι οι εξής:

1^η περιοχή: 1.696-1.484 cm⁻¹

Εικόνα 4.14 Ενδεικτική περιοχή επιλογής για τον διαχωρισμό ανάλυσης

 1^{η} περιοχή: Σε αυτή τη ζώνη απορρόφησης εντοπίζεται στα 1650 cm⁻¹, που αποδίδεται σε απορροφημένο νερό (Pappas et al. 2002, Pappas et al. 1998), και στην ύπαρξη του αμιδίου I (Basbasi et al.2014, Pappas et al. 1998, Schulz et al. 2007). Επίσης ασύμμετρη τάση του –COO⁻ παρατηρείται γύρω από τη περιοχή των 1600 cm⁻¹, που οφείλεται στις πηκτίνες σύμφωνα με τους Chatjigakis et al. (1998), ενώ χαρακτηριστική κορυφή στη περιοχή των 1506 cm⁻¹ υποδηλώνει ύπαρξη λιγνίνης (Pappas et al. 1998, Vivekanand et al. 2014).

Η ύπαρξη απορροφόμενου νερού επηρεάζει τη υφή των φασμάτων και συνεπώς ενδέχεται να καλύπτει τις κορυφές άλλων χαρακτηριστικών ομάδων, με αποτέλεσμα να δυσχεραίνει την αποκάλυψη των διαφοροποιήσεων. Επομένως ενδεχομένως επηρεάζει και τη προκειμένη διαχωριστική ανάλυση.

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.15 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλήν ενός διαχωρίστηκαν

πλήρως. Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.1 ανέρχεται στο 96,29%.

Εικόνα 45.15 Διαχωρισμός των στελεχών των Kubelka-Munk φασμάτων απορρόφησης με βάση τη βοτανική ταξινόμηση του Sideritis στη περιοχή 1.696-1.484 cm⁻¹

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.7 Στον πίνακα 4.7 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινομησής τους. Το φάσμα 21 του πίνακα 4.7 είναι το μόνο που δεν ταξινομήθηκε επιτυχώς. Η πραγματική κλάση που ανήκει το φάσματα 21 είναι το *Sideritis scardica*, ενώ κατατάσσεται στο *Sideritis euboaceae*.

Οι ζώνες απορρόφησης, που επιλέχθηκαν για τη διαχωριστική ανάλυση των στελεχών με τη μέθοδο Kubelka-Munk, σχετικά διαφέρουν με αυτές των εξομαλυνθέντων φασμάτων , παρόλα αυτά η ταξινόμηση του φάσματος 21 δεν πραγματοποιείται με επιτυχία και στις δύο μεθόδους. Παρουσιάζουν μια κοινή περιοχή απορρόφησης στα 1.543,03- 1.484,86 cm⁻¹. Στη περιοχή αυτή αποδίδεται κορυφή απορρόφησης χαρακτηριστική της λιγνίνης. Συγκρίνοντας τη συγκεκριμένη διαχωριστική ανάλυση στελεχών με αυτή των εξομαλυνθέντων φασμάτων, παρατηρεί κανείς ότι ο αριθμός αποτυχημένων ταξινομήσεων παραμένει ίδιος. Όσον αφορά τη διαχωριστική ανάλυση που πραγματοποιήθηκε στα τρία τμήματα του φυτικού υλικού (άνθη, φύλλα/βράκτια και στελέχη) με τη μέθοδο Kubelka-Munk φαίνεται , πως τα στελέχη διαθέτουν το υψηλότερο ποσοστό επιτυχούς ταξινόμησης.

						NT (
			Calculated			Next
Index	Spectrum Title	Actual Class	Class	Distance	Next Class	Distance
	Taigetos Mani	Sideritis	Sideritis		Sideritis	
1	Sideritis clandestina	clandestina	clandestina	0,7138	scardica	1,3183
	Parnwna Agrio	Sideritis	sideritis	0.0704	sideritis	0.0004
2	Sideritis clandestina	clandestina	clandestina	0,9536	scardica	0,9881
	Lampeia Ori-Ileia	sideritis	sideritis		sideritis	
3	Sideritis clandestina	clandestina	clandestina	1,0289	scardica	1,7553
	Alwnistaina-Arkadia					
	sideritis	sideritis	sideritis		sderitis	
4	peloponesiaca	peloponesiaca	peloponesiaca	0,4057	euboaceae	0,9114
	Xelmos-					
	Ntourntouvana					
	sideritis	sideritis	sideritis		Sideritis	
5	peloponesiaca	peloponesiaca	peloponesiaca	0,693	scardica	0,9509
	Xelmos- Mauroudata					
	sideritis	sideritis	sideritis		sderitis	
6	peloponesiaca	peloponesiaca	peloponesiaca	0,4725	euboaceae	0,7322
	Anatoliko Mainalo-					
	Butina Arkadia					
	sideritis	sideritis	sideritis		sderitis	
7	peloponesiaca	peloponesiaca	peloponesiaca	0,3475	euboaceae	0,864
	Dirfys -Euvoia	sderitis	sderitis		sideritis	
8	sderitis euboaceae	euboaceae	euboaceae	0,7715	syriaca	0,9986
	Euvoias Agrio	sderitis	sderitis		sideritis	
9	sderitis euboaceae.	euboaceae	euboaceae	0,7715	peloponesiaca	0,9691
	Samothraki	sideritis	sideritis		sderitis	
10	sideritis raeseri.	raeseri	raeseri	0,7565	euboaceae	0,8616
	Karpenisi	Sideritis	sideritis		sderitis	
11	sideritis raeseri	raeseri	raeseri	0,7365	euboaceae	0,9965
	Brynaina- Magnisias	sideritis	Sideritis		sideritis	
12	sideritis raeseri	raeseri	raeseri	1,0136	syriaca	1,3815
	Thesprwtia-					
	Aulotopos- Souli	sideritis	sideritis		sideritis	
13	sideritis raeseri	raeseri	raeseri	0,9316	scardica	1,0376
	Tsepelovo-Iwannina	sideritis	sideritis		sideritis	
14	sideritis raeseri	raeseri	raeseri	0,7223	peloponesiaca	1,0684
	Timfi-Iwannina	sideritis	sideritis		sideritis	
15	sideritis raeseri	raeseri	raeseri	0,6322	scardica	1,1755
	Armanitsa Preveza	Sideritis	Sideritis		sderitis	
16	sideritis raeseri	raeseri	raeseri	1,1501	euboaceae	1,197

Πίνακας 4.7 Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

	Tzoumerka-Surrako-						
	Iwannina	sideritis		sideritis		sderitis	
17	sideritis raeseri	raeseri		raeseri	1,1757	euboaceae	1,7131
	Olympos	Sideritis		sideritis		sideritis	
18	Sideritis scardica.	scardica		scardica	0,7778	raeseri	1,2891
	Paggaio	sideritis		sideritis		sideritis	
19	Sideritis scardica	scardica		scardica	1,1678	raeseri	1,237
	Flwrina- Filiwtas	sideritis		sideritis		Sideritis	
20	Sideritis scardica	scardica		scardica	1,1051	clandestina	1,1161
	Magnisia- Anavra-						
	Orthis	sideritis		sderitis		sideritis	
21	Sideritis scardica	scardica	>	euboaceae	0,7987	peloponesiaca	0,8557
	Agrafa-Thrapsimi-						
	Karditsa	sideritis		sideritis		sideritis	
22	Sideritis scardica	scardica		scardica	0,9882	peloponesiaca	1,1019
	Falakrou Agrio	sideritis		sideritis		sideritis	
23	Sideritis scardica	scardica		scardica	1,0911	peloponesiaca	1,5422
	Mutilini-Agiasos	sideritis		sideritis		Sideritis	
24	sideritis sipzlea	sipzlea		sipzlea	0,7472	syriaca	2,1343
	Kriti	sideritis		sideritis		sideritis	
25	S sideritis syriaca	syriaca		syriaca	0,7217	raeseri	1,1887
	Ierapetra-Kriti	sideritis		sideritis		sderitis	
26	sideritis syriac	syriaca		syriaca	0,7217	euboaceae	1,4845

4.2.1.3. Διαχωρισμός των κανονικοποιημένων φασμάτων FT-IR

Τα κανονικοποιημένα φάσματα (άνθεων, φύλλων/βρακτίων και στελεχών) εισήχθησαν στο λογισμικό πρόγραμμα TQ Analyst, προκειμένου να υποστούν διαχωριστική ανάλυση με βάση τις κλάσεις που αναφέρονται παραπάνω στο 4.2.1.

4.2.1.3.1 Άνθη

Η φασματική περιοχή που επιλέχθηκέ είναι η εξής:

1. 1^η περιοχή: 1.538 -1.194 cm⁻¹

 1^{η} περιοχή: Στη ζώνη απορρόφησης που επιλέχτηκε εντοπίζεται χαρακτηριστική κορυφή που αποδίδεται στη λιγνίνη στη περιοχή των 1506 cm⁻¹ (Pappas et al. 1998, Vivekanand et al. 2014). Επίσης παρουσιάζει μια κορυφή στη περιοχή 1434-1421 cm⁻¹, που υποδηλώνει τη συμμετρική τάση δόνησης του –COO⁻, που αποδίδεται στις πηκτίνες (Schulz et al. 2007). Στα 1.374 cm⁻¹ περίπου αποδίδονται δονήσεις κάμψης του CH₂, που χαρακτηρίζουν τη κυτταρίνη (Alonso-Simon et al. 2004) και δονήσεις κάμψης του –OH της κυτταρίνης (Pappas et al. 2002). Η απορρόφηση στα 1335-1321 cm⁻¹ μαρτυρά την

ύπαρξη πολυσακχάρων (Schulz et al. 2007), ενώ κορυφή στη περιοχή 1249-1229 cm⁻¹ υποδηλώνει ύπαρξη κυτταρίνης, DNA και (Vivekanand et al. 2014).

Εικόνα 4.16 Ενδεικτική περιοχή επιλογής για τον διαχωρισμό ανάλυσης

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.17 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλην δυο διαχωρίστηκαν πλήρως. Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.1 ανέρχεται στο 92%.

Εικόνα 4.17 Διαχωρισμός των άνθεων των κανονικοποιημένων φασμάτων απορρόφησης με βάση τη βοτανική ταξινόμηση του Sideritis στη περιοχή 1.538 - 1.194 cm⁻¹

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.8. Στον πίνακα 4.8 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινομησής τους. Το φάσμα 5 και 21 του πίνακα 4.8 είναι τα μόνα που δεν ταξινομήθηκαν επιτυχώς. Η πραγματική κλάση που ανήκει το φάσματα 5 και 21 είναι το Sideritis peloponesiaca και Sideritis scardica, ενώ κατατάσσονται στο Sideritis raeseri και στο Sideritis euboaceae αντίστοιχα.

Η περιοχή που επιλέχθηκε για τη συγκεκριμένη διαχωριστική ανάλυση ενώ συμφωνεί με αυτή των εξομαλυνθέντων φασμάτων, δεν συνάδει με τα αποτελέσματα των αποτυχημένων ταξινομήσεων της ανάλυσης, όπως παραδείγματος χάριν συμβαίνει με τη μέθοδο Kubelka-Munk. Παρόλα αυτά συγκρίνοντας τις τρεις μεθόδους μεταξύ τους όσον αφορά τον αριθμό των αποτυχημένων ταξινομήσεων δεν παρατηρούνται διαφοροποιήσεις.

			Calculated			Next
Index	Spectrum Title	Actual Class	Class	Distance	Next Class	Distance
			sideritis			
	Taigetos-Mani	Sideritis			sideritis	
1		clandestina	clandestina	0,758	raeseri	1,2096
	Parnwna (agrio)	sideritis	sideritis		sideritis	
2		clandestina	clandestina	0,758	syriaca	1,0186
	Alwnistaina-					
	Arkadia	sideritis	sideritis		sideritis	
3		peloponesiaca	peloponesiaca	1,0057	clandestina	1,6558
	Xelmos-					
	Ntourntouvana	sideritis	sideritis		sideritis	
4		peloponesiaca	peloponesiaca	0,8868	scardica	1,3513
	Xelmos-					
	Mauroudata Stugos	sideritis	sideritis		sideritis	
5		peloponesiaca	raeseri	0,5711	scardica	0,9897
	Anatoliko Mainalo-					
	Butina-Arkadia	sideritis	sideritis		sideritis	
6		peloponesiaca	peloponesiaca	0,5614	scardica	1,1007
	Dirfis- Euvoia	sideritis	sideritis		Sideritis	
7	•	euboaceae	euboaceae	0,6271	syriaca	0,6879
	Euvoias(agrio)	sideritis	Sideritis		Sideritis	
8		euboaceae	euboaceae	0,6271	raeseri	1,1944
9	Samothraki	sideritis	Sideritis	0,9594	sideritis	1,1413

Πίνακας 4.8 Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης
		raeseri	raeseri		scardica	
	Karpenisi	sideritis	Sideritis		sideritis	
10		raeseri	raeseri	0,9625	scardica	0,9681
	Brynaina Magnisias	sideritis	sideritis		sideritis	
11		raeseri	raeseri	1,1507	peloponesiaca	1,4971
	Thesprwtia-					
	Aulotopos-Souli	sideritis	sideritis		sideritis	
12		raeseri	raeseri	0,6818	scardica	1,1077
	Tsepelovo-					
	Iwannina	sideritis	sideritis		sideritis	
13		raeseri	raeseri	0,6904	peloponesiaca	0,9082
	Timfi-Iwannina	Sideritis	Sideritis		sideritis	
14		raeseri	raeseri	1,1243	euboaceae	1,1559
	Armanitsa-Preveza	sideritis	sideritis		sideritis	
15		raeseri	raeseri	0,684	scardica	0,8539
	Tzoumerka-					
	Surrako- Iwannina	sideritis	Sideritis		sideritis	
16		raeseri	raeseri	0.7075	scardica	0.9305
	Olympos sideritis	Sideritis	Sideritis	- ,	Sideritis	- ,
17	orympos siderius	scardica	scardica	0.9308	raeseri	1.2551
	Paggaio sideritis	sideritis	sideritis	-,	Sideritis	-,
18	r ugguro sidontis	scardica	scardica	0 9242	raeseri	1.0825
10	Fluring-Filiwtos	sideritis	sideritis	0,7242	sideritis	1,0025
10	Tiwima-Timwtas	scardica	scardica	1 1008	raasari	1 6017
19	Anorra Orthia	scarurca	scartica	1,1008	1405011	1,0017
	Allavia-Ofulis-	aidanitia	aidanitia		aidanitia	
20	waginsia	sideritis	sideritis	0.7605	sideritis	1 1701
20		scardica	scardica	0,7605	raeseri	1,1791
	Agrafa-Thrapsimi-				• • • • •	
01	Karditsa	sideritis	Sideritis	0 7170	sideritis	0.0575
21		scardica	euboaceae	0,7172	syriaca	0,9575
	Falakrou (agrio)	sideritis	sideritis		sideritis	
22		scardica	scardica	1,0711	raeseri	1,2347
	Agiasos-Mutilini	sideritis	sideritis		sideritis	
23		sypilea	sypilea	0	clandestina	2,3549
	Kriti sideritis	sideritis	Sideritis		Sideritis	
24	syriaca	syriaca	syriaca	0,646	clandestina	0,801
	Ierapetra- Kriti	sideritis	Sideritis		Sideritis	
25		syriaca	syriaca	0,646	euboaceae	0,8941

4.2.1.3.2. Φύλλα/βράκτια

Η φασματική περιοχή που επιλέχτηκε είναι η εξής:

1. 1^η περιοχή: 1.548 -1.301 cm⁻¹

 1^{η} περιοχή: Στη ζώνη απορρόφησης που επιλέχτηκε εντοπίζεται κορυφή που υποδηλώνει την ύπαρξη της λιγνίνης στη περιοχή των 1506 cm⁻¹ (Pappas et al. 1998, Vivekanand et al. 2014). Επίσης παρουσιάζει μια κορυφή στη περιοχή 1434-1421 cm⁻¹, που μαρτυρά ύπαρξη πηκτινών (Schulz et al. 2007). Στα 1.374 cm⁻¹ περίπου αποδίδονται δονήσεις κάμψης του CH₂, που χαρακτηρίζουν τη κυτταρίνη (Alonso-Simon et al. 2004) και δονήσεις κάμψης του –OH της κυτταρίνης (Pappas et al. 2002). Η απορρόφηση στα 1335-1321 cm⁻¹ μαρτυρά την ύπαρξη πολυσακχάρων (Schulz et al. 2007)

Εικόνα 4.18 Ενδεικτική περιοχή επιλογής για τον διαχωρισμό ανάλυσης

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.19 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλην ενός διαχωρίστηκαν πλήρως. Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.1 ανέρχεται στο 96,29%.

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.9. Στον πίνακα 4.9 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινομησής τους. Το φάσμα 5 του πίνακα 4.9 είναι το μόνο που δεν ταξινομήθηκε επιτυχώς. Η πραγματική κλάση που ανήκει το φάσμα 5 είναι το Sideritis peloponesiaca, ενώ κατατάσσεται στο Sideritis raeseri. Το φάσμα 5 εντοπίζεται και κατά διαχωριστική ανάλυση των εξομαλυνθέντων φασμάτων ως φάσμα μη επιτυχούς ταξινόμησης.

Η συγκεκριμμένη διαχωριστική ανάλυση θεωρείται ως πιο επιτυχής σε σχέση με τις άλλες δύο. Ο αριθμός των αποτυχημένων ταξινομήσεων μείωνεται στο ένα φάσμα, καθιστόντας τη μέθοδο καταλληλότερη.

ibrate Quantify Explain Clos	Performance Index: N/A Previous: N/A	Calibrated
		 Calibration X Validation ∆ Y Calibration O ∆ Y Calibration O △ Y Validation ○ Other Calibration ○ Other Validation
-0,1	Distance to sideritis scardica	

Εικόνα 4.19 Διαχωρισμός των φύλλων/βρακτίων των κανονικοποιημένων φασμάτων απορρόφησης με βάση τη βοτανική ταξινόμηση του Sideritis στη περιοχή 1.548 -1.301 cm⁻¹

Πίνακας 4.9 Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

				Calculated			Next
Index	Spectrum Title	Actual Class		Class	Distance	Next Class	Distance
		sideritis		sideritis		sideritis	
1	Taigetos- Mani	clandestina		clandestina	0,6393	peloponesiaca	1,0098
		sideritis		sideritis		sideritis	
2	Parnwas (agrio)	clandestina		clandestina	0,7123	peloponesiaca	0,7299
	Alwnistaina-	sideritis		sideritis		sideritis	
3	Arkadia	peloponesiaca		peloponesiaca	0,5818	sipylea	0,8794
	Xelmos-	sideritis		sideritis		sideritis	
4	Ntourntouvana	peloponesiaca		peloponesiaca	0,739	clandestina	0,8671
	Xelmos-						
	Mauroudata	sideritis				sideritis	
5	Stugos	peloponesiaca	\diamond	sideritis raeseri	0,9153	peloponesiaca	0,9857
	Anatoliko	sideritis		sideritis		sideritis	
6	Mainalo- Butina-	peloponesiaca		peloponesiaca	0,4539	scardica	1,073

	Arkadia					
	Lampeia Ori-	sideritis	sideritis		sideritis	
7	Divri- Ileia	clandestina	clandestina	0,8795	peloponesiaca	1,6679
		sideritis	sideritis		sideritis	
8	Dirfis- Euvoia	euboaceae	euboaceae	0,6683	sipylea	1,3352
		sideritis	sideritis		sideritis	
9	Euvoias(agrio)	euboaceae	euboaceae	0,6683	syriaca	0,8268
		sideritis			sideritis	
10	Samothraki	raeseri	sideritis raeseri	1,1224	scardica	1,4473
		sideritis			sideritis	
11	Karpenisi	raeseri	sideritis raeseri	0,5925	peloponesiaca	0,9835
	Brynaina	sideritis			sideritis	
12	Magnisias	raeseri	sideritis raeseri	0,8463	scardica	1,0689
	Thesprwtia-	sideritis			sideritis	
13	Aulotopos-Souli	raeseri	sideritis raeseri	1,1156	peloponesiaca	1,2134
	Tsepelovo-	sideritis			sideritis	
14	Iwannina	raeseri	sideritis raeseri	0,8259	scardica	0,9394
		sideritis			sideritis	
15	Timfi-Iwannina	raeseri	sideritis raeseri	0,915	scardica	1,1975
	Armanitsa-	sideritis			sideritis	
16	Preveza	raeseri	sideritis raeseri	0,7944	peloponesiaca	0,9081
	Tzoumerka-					
	Surrako-	sideritis			sideritis	
17	Iwannina	raeseri	sideritis raeseri	1,0059	scardica	1,198
		sideritis	sideritis		sideritis	
18	Olympos	scardica	scardica	0,9274	raeseri	1,1676
		sideritis	sideritis		sideritis	
19	Paggaio.	scardica	scardica	0,8237	raeseri	0,8647
		sideritis	sideritis		sideritis	
20	Flwrina- Filiwtas	scardica	scardica	1,1196	peloponesiaca	1,1329
	Anavra-Orthys-	sideritis	sideritis		sideritis	
21	Magnisia	scardica	scardica	0,8818	clandestina	0,9371
	Agrafa-					
	Thrapsimi-	sideritis	sideritis		sideritis	
22	Karditsa	scardica	scardica	0,9925	raeseri	1,4457
		sideritis	sideritis		sideritis	
23	Falakrou (agrio)	sideritis scardica	sideritis scardica	1,0439	sideritis raeseri	1,3127
23	Falakrou (agrio)	sideritis scardica sideritis	sideritis scardica	1,0439	sideritis raeseri sideritis	1,3127
23 24	Falakrou (agrio) Agiasos-Mutilini	sideritis scardica sideritis sipylea	sideritis scardica sideritis sipylea	1,0439 0,7954	sideritis raeseri sideritis euboaceae	1,3127 1,4173
23 24	Falakrou (agrio) Agiasos-Mutilini	sideritis scardica sideritis sipylea sideritis	sideritis scardica sideritis sipylea	1,0439 0,7954	sideritis raeseri sideritis euboaceae sideritis	1,3127 1,4173
23 24 25	Falakrou (agrio) Agiasos-Mutilini Kriti	sideritis scardica sideritis sipylea sideritis syriaca	sideritis scardica sideritis sipylea sideritis syriaca	1,0439 0,7954 0,9249	sideritis raeseri sideritis euboaceae sideritis euboaceae	1,3127 1,4173 1,579
23 24 25	Falakrou (agrio) Agiasos-Mutilini Kriti	sideritis scardica sideritis sipylea sideritis syriaca sideritis	sideritis scardica sideritis sipylea sideritis syriaca	1,0439 0,7954 0,9249	sideritis raeseri sideritis euboaceae sideritis euboaceae sideritis	1,3127 1,4173 1,579

4.2.1.3.3. Στελέχη

Η φασματική περιοχή που επιλέχθηκέ είναι η εξής:

1. 1^η περιοχή: 1.484 -1.193 cm⁻¹

1^η περιοχή: Παρουσιάζει μια κορυφή στη περιοχή 1434-1421 cm⁻¹, που μαρτυρά ύπαρξη πηκτινών (Schulz et al. 2007). Στην περιοχη των 1.374 cm⁻¹περίπου αποδίδονται δονήσεις που είναι χαρκτηριστικές για τη κυτταρίνη (Alonso-Simon et al. 2004, Pappas et al. 2002). Η απορρόφηση στα 1335-1321 cm⁻ μαρτυρά την ύπαρξη πολυσακχάρων (Schulz et al. 200). Η κορυφή στη περιοχή 1249-1229 cm⁻¹ σχετίζεται με τη κυτταρίνη (Pappas et al. 2002) το DNA και τη λιγνίνη (Vivekanand et al. 2014).

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.21 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλην ενός διαχωρίστηκαν πλήρως. Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.1 ανέρχεται στο 96,29%.

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.10. Στον πίνακα 4.10 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινομησής τους. Το φάσμα 8 του πίνακα 4.10 είναι το μόνο που δεν ταξινομήθηκε επιτυχώς. Η πραγματική κλάση που ανήκει το φάσμα 8 είναι το Sideritis euboaceae, ενώ κατατάσσεται στο Sideritis syriaca. Συγκρίνοντας τις τρεις μεθόδους μεταξύ τους όσον αφορά τον αριθμό των αποτυχημένων ταξινομήσεων δεν παρατηρούνται ιδιαίτερες διαφοροποιήσεις. Όσον αφορά τη διαχωριστική ανάλυση των κανονικοποιημένων φασμάτων για τα τρία τμήματα του φυτικού υλικού(στελέχη,φύλλα/βράκτια και άνθη) φαίνεται πως τα στελέχη και τα φύλλα/βράκτια διαθέτουν το μεγαλύτερο ποσοστό επτυχούς ταξινόμησης. Τα στελέχη όμως και στο σύνολο των τριών μεθόδων διαθέτουν το υψηλότερο ποσοστό, καθιστώντας τα, τα καταλληλότερα για τη βοτανική ταξινόμηση του γένους Sideritis.

Εικόνα 4.21 Διαχωρισμός των στελεχών των κανονικοποιημένων φασμάτων απορρόφησης με βάση τη βοτανική ταξινόμηση του Sideritis στη περιοχή 1.484 - 1.193 cm-1

Πίνακας 4.10Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

			Calculated			Next
IIndex	Spectrum Title	Actual Class	Class	Distance	Next Class	Distance
		sideritis	sideritis		sideritis	
1	Taigetos-Mani	clandestina	clandestina	0,5551	scardica	1,4965
		sideritis	sideritis		sideritis	
2	Parnwna (agrio)	clandestina	clandestina	0,9662	peloponesesiaca	1,2104
	Alwnisstaina-	sideritis	sideritis		sideritis	
3	Arkadia	peloponesesiaca	peloponesesiaca	0,4545	euboaceae	0,9893
	Xelmos-	sideritis	sideritis		sideritis	
4	Ntourntouvana	peloponesesiaca	peloponesesiaca	0,779	euboaceae	1,0559
	Xelmos-	sideritis	sideritis		sideritis	
5	Ntourntouvana	peloponesesiaca	peloponesesiaca	0,6136	euboaceae	0,9002
6	Anatoliko	sideritis	sideritis	0,6282	sideritis	0,8596

	Mainalo- Butina- Arkadia	peloponesesiaca		peloponesesiaca		euboaceae	
	Lampeia Ori-	sideritis		sideritis		sideritis	
7	Ileia	clandestina		clandestina	0.9757	scardica	1.8334
		sideritis			.,	sideritis	-,
8	Dirfis- Fuvoia	euboaceae	\sim	sideritis svriaca	0 7247	euboaceae	0 7298
0	Dirits- Luvola	sideritie		sidoritis	0,7247	sidoritis	0,7270
0	European (a comina)	subseese		subseese	0 7208		1 0777
9	Euvolas(agrio)	euboaceae		euboaceae	0,7298	peroponesestaca	1,0777
10		sideritis			0.001		1 1 1 5 0
10	Samothraki	raeseri		sideritis raeseri	0,921	sideritis syriaca	1,1172
		sideritis				sideritis	
11	Karpenisi	raeseri		sideritis raeseri	0,8908	scardica	1,0609
	Brynaina	sideritis					
12	Magnisias	raeseri		sideritis raeseri	1,1046	sideritis syriaca	1,7946
	Thesprwtia-	sideritis		sideritis		sideritis	
13	Aulotopos-Souli	scardica		scardica	0,729	peloponesesiaca	1,315
	Tsepelovo-	sideritis				sideritis	
14	Iwannina	raeseri		sideritis raeseri	0,7508	scardica	1,578
		sideritis		sideritis			
15	Timfi-Iwannina	scardica		scardica	0,8563	sideritis raeseri	1,2243
	Armanitsa-	sideritis				sideritis	
16	Preveza	raeseri		sideritis raeseri	1,1064	euboaceae	1,6752
	Tzoumerka-						
	Surrako-	sideritis				sideritis	
17	Iwannina	raeseri		sideritis raeseri	0,9785	scardica	1,8117
		sideritis		sideritis			
18	Olympos	scardica		scardica	0,9909	sideritis raeseri	1,7311
	5 1	sideritis		sideritis			,
19	Paggaio	scardica		scardica	0.8941	sideritis raeseri	1.3945
		sideritis		sideritis	.,	sideritis	-,
20	Flwrina-Filiwtas	scardica		scardica	0 9369	clandestina	1 2536
20	Anavra-Orthys-	sideritis		sideritis	0,7507	sideritis	1,2550
21	Magnisia	scardica		scardica	0.962	pelopopesesiaca	1 1803
21	Agrafa	Scalulca		scalulca	0,902	peroponesesiaca	1,1805
	Agraia-	aidonitia		aidamitia			
22	Thrapshin-	sidentis		sideritis	0.0116		1 (152
22	Karditsa	scardica		scardica	0,9116	sideritis raeseri	1,6153
	511	sideritis		sideritis		sideritis	1
23	Falakrou (agrio)	scardica		scardica	1,1915	clandestina	1,5627
						sideritis	
25	Agiasos-Mutilini	sideritis sipylea		sideritis sipylea	0,784	euboaceae	2,4432
						sideritis	
26	Kriti	sideritis syriaca		sideritis syriaca	0,7811	euboaceae	1,4574

4.2.2 Διαχωριστική ανάλυση με βάση τη γεωγραφική ταξινόμηση του γένους Sideritis

Για τη διαχωριστική ανάλυση του *Sideritis* με βάση τη γεωγραφική ταξινόμηση του χρησιμοποιήθηκαν οι εξής κλάσεις-ομάδες:

Μακεδονία, Θεσσαλία, Ηπειρος, Πελοπόνησος, Μυτιλήνη, Ευβοια, Κρήτη

4.2.2.1. Διαχωρισμός των εξομαλυνθέντων φασμάτων FT-IR

Τα φάσματα που υπέστησαν εξομάλυνση χωρίς τη μέθοδο Kubelka-Munk εισήχθησαν στο λογισμικό πρόγραμμα TQ Analyst, προκειμένου να υποστούν διαχωριστική ανάλυση με βάση τις κλάσεις που αναφέρονται παραπάνω στο 4.2.2.

4.2.2.1.1 Άνθη

. Η φασματική περιοχή που επιλέχθηκε είναι η εξής:

1. 1^η περιοχή: 1.698-1.485 cm⁻¹

 1^{η} περιοχή: Σε αυτή τη ζώνη απορρόφησης εντοπίζεται στα 1650 cm⁻¹, ^{που} αποδίδεται σε απορροφόμενο νερό (Pappas et al. 2002, Pappas et al. 1998), και στην ύπαρξη του αμιδίου I (Basbasi et al.2014, Pappas et al. 1998, Schulz et al. 2007). Επίσης η απορρόφηση κοντά στη περιχοχή των 1600 cm⁻¹, οφείλεται στις πηκτίνες συμφωνα με τους Chatjigakis et al. (1998), ενώ κορυφή στη περιοχή των 1506 cm⁻¹ υποδηλώνει ύπαρξη λιγνίνης (Pappas et al. 1998, Vivekanand et al. 2014).

Η ύπαρξη απορροφόμενου νερού επηρεάζει τη υφή των φαμάτων και συνέπως ενδέχεται να καλύπτει τις κορυφές άλλων χαρακτηριστικών ομάδων, με αποτέλεσμα να δυσχεραίνει την αποκάλυψη των διαφοροποιήσεων. Επομένως ενδεχομένως επηρεάζει και τη προκειμένη διαχωριστική ανάλυση.

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.23 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλην δύο διαχωρίστηκαν πλήρως. Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.2. ανέρχεται στο 92%.

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.11 Στον πίνακα 4.11 παρουσιάζονται οι αποστάσεις των

φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινομησής τους. Το φάσμα 21 και 24 του πίνακα 4.11 είναι τα μόνα που δεν ταξινομήθηκαν επιτυχώς. Η πραγματική κλάση που ανήκει τα φάσματα 21 και 24 (Τσάι άγριο Πάρνωνα και τσάι Τύμφης Ιωαννίνων) είναι η Πελοπόνησος και η Ήπειρος αντίστοιχα, ενώ κατατάσσονται στη Κρήτη και στην Έυβοια

Εικόνα 4.22 Ενδεικτική περιοχή επιλογής για τον διαχωρισμό ανάλυσης

Εικόνα 6.23 Διαχωρισμός των άνθεων των εξομαλυνθέντων φασμάτων απορρόφησης με βάση τη γεωγραφική ταξινόμηση του Sideritis στη περιοχή 1.698-1.485 cm⁻¹

				Coloulated			Nort
Indor	Succture Title	A stual Class		Class	Distance	Nort Close	Distance
muex	spectrum The	Actual Class		Class	Distance	Next Class	Distance
1	Agrafa-Thrapsimi-				1 0257		1.1660
1	Karditsa	Θεσσαλία		Θεσσαλία	1,0257	Μακεδονία	1,1668
2	Alwnistaina-Arkadia	Πελοπόνησος		Πελοπόνησος	0,9487	Κρήτη	1,4051
3	Anavra-Orthis-Magnisia	Θεσσαλία		Θεσσαλία	0,74	Μακεδονία	1,2604
	Anatoliko Mainalo-						
4	Butina-Arkadia	Πελοπόνησος		Πελοπόνησος	0,7597	Κρήτη	0,8983
5	Armanitsa-Preveza	Ηπειρος		Ηπειρος	0,7346	Μακεδονία	0,8834
6	Brynaina Magnisias	Θεσσαλία		Θεσσαλία	0,9157	Μακεδονία	1,5608
7	Euvoias(agrio)	Ευβοια		Ευβοια	0,6672	Θεσσαλία	0,9849
						Πελοπόνησ	
8	Dirfis- Euvoia	Ευβοια		Ευβοια	0,6672	ος	1,0226
	Thesprwtia-Aulotopos-						
9	Souli	Ηπειρος		Ηπειρος	0,7401	Μακεδονία	1,136
						Πελοπόνησ	
10	Ierapetra- Kriti	Κρήτη		Κρήτη	0,7381	ος	0,9606
11	Karpenisi	Θεσσαλία		Θεσσαλία	0,7891	Μακεδονία	1,2174
						Πελοπόνησ	
12	Kriti	Κρήτη		Κρήτη	0,7381	ος	0,9404
	Xelmos-Mauroudata						
13	Stugos	Πελοπόνησος		Πελοπόνησος	0,9408	Κρήτη	1,0246
14	Agiasos-Mutilini	Μυτιλήνη		Μυτιλήνη	0	Κρήτη	1,8806
15	Xelmos-Ntourntouvana	Πελοπόνησος		Πελοπόνησος	0,8966	Ευβοια	1,019
16	Olympos.	Θεσσαλία		Θεσσαλία	1,022	Μακεδονία	1,0788
17	Paggaio	Μακεδονία		Μακεδονία	0.7141	Θεσσαλία	1.0237
18	Samothraki	Μακεδονία		Μακεδονία	1.0769	Θεσσαλία	1.2128
19	Taigetos-Mani	Πελοπόνησος		Πελοπόνησος	0.9809	Κοήτη	1.0525
	Tzoumerka-Surrako-	110101011005		1101000011005	0,7007	1-1-1-1	1,0020
20	Iwannina	Ηπειοος		Ηπειοος	0.8306	Μακεδονία	1 2695
20	Twainina	metpog		Timetpos	0,0500	Πελοπόνησ	1,2095
21	Parnyuna (agrio)	Πελοπόνησος	#	Κοήτη	1 0296		1.0556
21	Falakrou (agrio)	Μακοδονία	π	Marcolouía	0.0270	Harmooc	1,0550
22	raiakiou (agrio)	νιακεουνία		MUKEOOVIU	0,9878	Πολοπάτητος	1,1140
22	Translaur I.	II		11	0.5054	Πελοπονησ	0.0007
23	r sepelovo-iwannina r	Ηπειρος		Ηπειρος	0,5854	υς	0,9927
24	Timfi-Iwannina	Ηπειρος	#	Ευβοια	0,8767	Ηπειρος	0,8823
25	Flwrina-Filiwtas	Μακεδονία		Μακεδονία	1,0623	Ηπειρος	1,4856

Πίνακας 4.11Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

4.2.2.1.2. Φύλλα/βράκτια

Η φασματική περιοχή που επιλέχθηκε είναι η εξής:

Εικόνα 4.24 Ενδεικτική περιοχή επιλογής για τον διαχωρισμό ανάλυσης

1η περιοχή: Στη περιοχή αυτή εντοπίζεται στα 1650 cm⁻¹ κορυφή, που αποδίδεται σε απορροφούμενο νερό (Pappas et al. 2002, Pappas et al. 1998), και στην ύπαρξη του αμίδιο I (Basbasi et al.2014, Pappas et al. 1998, Schulz et al. 2007). Επίσης ύπαρξη λιγνίνης και πηκτινών παρατηρείται γύρω από τη περιχοχή των 1600 cm-1, συμφωνα με τους Chatjigakis et al. (1998), Pappas et al. (1998), Vivekanand et al. (2014).

Η ύπαρξη απορροφόμενου νερού ενδεχομένως επηρεάζει τη προκειμένη διαχωριστική ανάλυση.

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.25 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλήν δύο διαχωρίστηκαν πλήρως. . Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.2. ανέρχεται στο 92,59 %.

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.12 Στον πίνακα 4.12 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινομησής τους. Το φάσμα 13 και 17 του πίνακα 4.12 είναι τα μόνα που δεν ταξινομήθηκαν επιτυχώς. Η πραγματική

κλάση που ανήκει τα φάσματα 13 και 17 (Στυγός Χελμού, Παγγαίο) είναι η Πελοπόνησος και η Μακεδονία, ενώ κατατάσσονται στη Μακεδονία και στην Ήπειρο. Η επόμενη κλαση που τα κατατάσει διαφέρει πάλι από τη πραγματική. Τα ταξινομεί στην Ήπειρο και τη Θεσσαλία αντίστοιχα.

Εικόνα 47.25 Διαχωρισμός των φύλλων/βρακτίων των εξομαλυνθέντων φασμάτων απορρόφησης με βάση τη γεωγραφική ταξινόμηση του Sideritis στη περιοχή 1.701 - 1.486 cm⁻¹

Πινακας 4.12 Αποτελεσματά και αποστάσεις της οιαχωριστικής αναλύ
--

			Calculated			Next
Index	Spectrum Title	Actual Class	Class	Distance	Next Class	Distance
	Agrafa-					
	Thrapsimi-					
1	Karditsa	Θεσσαλία	Θεσσαλία	0,7664	Ηπειρος	1,344
	Alwnistaina-					
2	Arkadia	Πελοπόνησος	Πελοπόνησος	0,9359	Μακεδονία	1,1131
	Anavra-Orthys-					
3	Magnisia	Θεσσαλία	Θεσσαλία	0,5979	Ηπειρος	0,8257
	Anatoliko					
	Mainalo- Butina-					
4	Arkadia	Πελοπόνησος	Πελοπόνησος	0,733	Κρήτη	0,8521
	Armanitsa-				Πελοπόνησ	
5	Preveza	Ηπειρος	Ηπειρος	0,7851	ος	0,9508
	Brynaina					
6	Magnisias	Θεσσαλία	Θεσσαλία	0,7248	Ηπειρος	1,1312
7	Euvoias(agrio)	Ευβοια	Ευβοια	0,853	Κρήτη	1,4493

						Πελοπόνησ	
8	Dirfis- Euvoia	Ευβοια		Ευβοια	0,853	ος	1,3719
	Thesprwtia-						
9	Aulotopos-Souli	Ηπειρος		Ηπειρος	0,881	Θεσσαλία	1,2337
10	Ierapetra- Kriti	Κρήτη		Κρήτη	0,7321	Μακεδονία	1,0262
11	Karpenisi	Θεσσαλία		Θεσσαλία	0,9168	Ευβοια	1,0446
						Πελοπόνησ	
12	Kriti	Κρήτη		Κρήτη	0,7321	ος	1,3073
	Xelmos-						
	Mauroudata						
13	Stugos	Πελοπόνησος	#	Μακεδονία	1,0214	Ηπειρος	1,0506
14	Agiasos-Mutilini	Μυτιλήνη		Μυτιλήνη	0,6375	Κρήτη	2,0658
	Xelmos-						
15	Ntourntouvana	Πελοπόνησος		Πελοπόνησος	0,8673	Θεσσαλία	1,0554
16	Olympos	Θεσσαλία		Θεσσαλία	1,0642	Ηπειρος	1,1585
17	Paggaio	Μακεδονία	#	Ηπειρος	0,7195	Θεσσαλία	0,8006
						Πελοπόνησ	
18	Samothraki	Μακεδονία		Μακεδονία	1,0484	ος	1,5189
18 19	Samothraki Taigetos- Mani	Μακεδονία Πελοπόνησος		Μακεδονία Πελοπόνησος	1,0484 0,9989	ος Μακεδονία	1,5189 1,2071
18 19	Samothraki Taigetos- Mani Tzoumerka-	Μακεδονία Πελοπόνησος		Μακεδονία Πελοπόνησος	1,0484 0,9989	ος Μακεδονία	1,5189 1,2071
18 19	Samothraki Taigetos- Mani Tzoumerka- Surrako-	Μακεδονία Πελοπόνησος		Μακεδονία Πελοπόνησος	1,0484 0,9989	ος Μακεδονία	1,5189 1,2071
18 19 20	Samothraki Taigetos- Mani Tzoumerka- Surrako- Iwannina	Μακεδονία Πελοπόνησος Ηπειρος		Μακεδονία Πελοπόνησος Ηπειρος	1,0484 0,9989 0,8427	ος Μακεδονία Θεσσαλία	1,5189 1,2071 1,1475
18 19 20 21	Samothraki Taigetos- Mani Tzoumerka- Surrako- Iwannina Parnwas (agrio)	Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος		Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος	1,0484 0,9989 0,8427 0,4911	ος Μακεδονία Θεσσαλία Κρήτη	1,5189 1,2071 1,1475 1,0152
18 19 20 21	Samothraki Taigetos- Mani Tzoumerka- Surrako- Iwannina Parnwas (agrio)	Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος		Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος	1,0484 0,9989 0,8427 0,4911	ος Μακεδονία Θεσσαλία Κρήτη Πελοπόνησ	1,5189 1,2071 1,1475 1,0152
18 19 20 21 22	Samothraki Taigetos- Mani Tzoumerka- Surrako- Iwannina Parnwas (agrio) Falakrou (agrio)	Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος Μακεδονία		Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος Μακεδονία	1,0484 0,9989 0,8427 0,4911 0,9666	ος Μακεδονία Θεσσαλία Κρήτη Πελοπόνησ ος	1,5189 1,2071 1,1475 1,0152 1,1476
18 19 20 21 22	Samothraki Taigetos- Mani Tzoumerka- Surrako- Iwannina Parnwas (agrio) Falakrou (agrio) Tsepelovo-	Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος Μακεδονία		Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος Μακεδονία	1,0484 0,9989 0,8427 0,4911 0,9666	ος Μακεδονία Θεσσαλία Κρήτη Πελοπόνησ ος	1,5189 1,2071 1,1475 1,0152 1,1476
 18 19 20 21 22 23 	Samothraki Taigetos- Mani Tzoumerka- Surrako- Iwannina Parnwas (agrio) Falakrou (agrio) Tsepelovo- Iwannina	Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος Μακεδονία Ηπειρος		Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος Μακεδονία Ηπειρος	1,0484 0,9989 0,8427 0,4911 0,9666	ος Μακεδονία Θεσσαλία Κρήτη Πελοπόνησ ος Θεσσαλία	1,5189 1,2071 1,1475 1,0152 1,1476 0,8926
 18 19 20 21 22 23 24 	Samothraki Taigetos- Mani Tzoumerka- Surrako- Iwannina Parnwas (agrio) Falakrou (agrio) Tsepelovo- Iwannina Timfi-Iwannina	Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος Μακεδονία Ηπειρος Ηπειρος		Μακεδονία Πελοπόνησος Ηπειρος Μακεδονία Ηπειρος Ηπειρος	1,0484 0,9989 0,8427 0,4911 0,9666 0,5759 1,0136	ος Μακεδονία Θεσσαλία Κρήτη Πελοπόνησ ος Θεσσαλία Μακεδονία	1,5189 1,2071 1,1475 1,0152 1,1476 0,8926 1,0765
 18 19 20 21 22 23 24 	Samothraki Taigetos- Mani Tzoumerka- Surrako- Iwannina Parnwas (agrio) Falakrou (agrio) Tsepelovo- Iwannina Timfi-Iwannina	Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος Μακεδονία Ηπειρος Ηπειρος		Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος Μακεδονία Ηπειρος Ηπειρος	1,0484 0,9989 0,8427 0,4911 0,9666 0,5759 1,0136	ος Μακεδονία Θεσσαλία Κρήτη Πελοπόνησ ος Θεσσαλία Μακεδονία	1,5189 1,2071 1,1475 1,0152 1,1476 0,8926 1,0765
 18 19 20 21 22 23 24 25 	Samothraki Taigetos- Mani Tzoumerka- Surrako- Iwannina Parnwas (agrio) Falakrou (agrio) Tsepelovo- Iwannina Timfi-Iwannina Flwrina- Filiwtas	Μακεδονία Πελοπόνησος Ηπειρος Μακεδονία Ηπειρος Ηπειρος		Μακεδονία Πελοπόνησος Ηπειρος Μακεδονία Ηπειρος Ηπειρος	1,0484 0,9989 0,8427 0,4911 0,9666 0,5759 1,0136	ος Μακεδονία Θεσσαλία Κρήτη Πελοπόνησ ος Θεσσαλία Μακεδονία Ος	1,5189 1,2071 1,1475 1,0152 1,1476 0,8926 1,0765 1,0642
 18 19 20 21 22 23 24 25 	Samothraki Taigetos- Mani Tzoumerka- Surrako- Iwannina Parnwas (agrio) Falakrou (agrio) Falakrou (agrio) Sepelovo- Iwannina Timfi-Iwannina Flwrina- Filiwtas Lampeia Ori-	Μακεδονία Πελοπόνησος Ηπειρος Μακεδονία Ηπειρος Ηπειρος Μακεδονία		Μακεδονία Πελοπόνησος Ηπειρος Πελοπόνησος Μακεδονία Ηπειρος Μακεδονία	1,0484 0,9989 0,8427 0,4911 0,9666 0,5759 1,0136 1,0016	ος Μακεδονία Θεσσαλία Κρήτη Πελοπόνησ ος Θεσσαλία Μακεδονία Πελοπόνησ	1,5189 1,2071 1,1475 1,0152 1,1476 0,8926 1,0765 1,0642

4.2.2.1.3. Στελέχη

Η φασματική περιοχή που επιλέχθηκε είναι η εξής:

1. $1^{\eta} \pi \epsilon \rho ι \circ \chi \dot{\eta}$: 1.700 - 1.486 cm⁻¹

1η περιοχή: Κορυφή απορρόφησης στα 1650 cm⁻¹ αποδίδεται σε απορροφόμενο νερό (Pappas et al. 2002, Pappas et al. 1998), και στην ύπαρξη του αμιδίου I (Basbasi et al.2014, Pappas et al. 1998, Schulz et al. 2007). Επίσης συμφωνα με τους Chatjigakis et

al. (1998), Pappas et al. (1998), Vivekanand et al. (2014) κορυφή απορρόφησης στη περιχοχή των 1600 cm⁻¹μαρτυρά την ύπαρξη λιγνίνης και πηκτινών

Η ύπαρξη απορροφόμενου νερού ενδεχομένως επηρεάζει τη προκειμένη διαχωριστική ανάλυση.

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.27 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλήν τριών διαχωρίστηκαν πλήρως. . Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.2. ανέρχεται στο 88,88 %.

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.13. Στον πίνακα 4.13 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινομησής τους. Το φάσμα 2, 15 και 24 του πίνακα 4.13 είναι τα μόνα που δεν ταξινομήθηκαν επιτυχώς. Η πραγματική κλάση που ανήκει τα φάσματα 2, 15 και 24 (Αλωνίσταινα-Αρκαδίας, Ντουρντουβάνα Χελμού και Τύμφη Ιωαννίνων) είναι η Πελοπόνησος στα δύο πρώτα και η Ήπειρος στο τελευταίο, ενώ κατατάσσονται τα δύο πρώτα στην Ήπειρο, και το τελευταίο στην Πελλοπόνησο. Συγκρίνοντας τη διαχωριστική ανάλυση των εξομαλυνθέντων φασμάτων στα τρία τμήματα του φυτικού υλικού (άνθη, φύλλα/βράκτια και στελέχη) παρατηρούμε πως τα φύλλα/βράκτια διαθέτουν το μεγαλύτερο ποσοστό επιτυχούς ταξινόμησης, ενώ τα στελέχη το μικρότερο. Αυτό έρχεται σε αναντιστοιχία με τα αποτελέσματα που έδωσαν εξομαλυνθέντα φάσματα της βοτανικής ταξινόμησης, όπου τα στελέχη κατείχαν το μεγαλύτερο ποσοστό.

Εικόνα 4.27 Διαχωρισμός των στελεχών των εξομαλυνθέντων φασμάτων απορρόφησης με βάση τη γεωγραφική ταξινόμηση του Sideritis στη περιοχή 1.700 - 1.486 cm⁻¹

				Calculated			Next
Index	Spectrum Title	Actual Class		Class	Distance	Next Class	Distance
	Agrafa-						
	Thrapsimi-						
1	Karditsa	Θεσσαλία		Θεσσαλία	0,915	Μακεδονία	1,031
	Alwnistaina-						
2	Arkadia	Πελοπόνη σ ος	#	Ηπειρος	0,7775	Πελοπόνησος	0,8263
	Magnisia-						
3	Anavra- Orthis	Θεσσαλία		Θεσσαλία	0,5053	Μακεδονία	0,6358
	Anatoliko						
	Mainalo-Butina						
4	Arkadia	Πελοπόνησος		Πελοπόνησος	0,4725	Ηπειρος	0,6113
	Armanitsa						
5	Preveza	Ηπειρος		Ηπειρος	0,7793	Πελοπόνησος	1,0225
	Brynaina-						
6	Magnisias	Θεσσαλία		Θεσσαλία	0,9312	Πελοπόνησος	1,1515
7	Euvoias Agrio	Ευβοια		Ευβοια	0,8945	Πελοπόνησος	1,1615
8	Dirfys -Euvoia	Ευβοια		Ευβοια	0,8945	Ηπειρος	1,2351
	Thesprwtia-						
9	Aulotopos-	Ηπειρος		Ηπειρος	0,9681	Πελοπόνησος	1,2337

Πίνακας 4.13 Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

	Souli						
10	Ierapetra-Kriti	Κρήτη		Κρήτη	0,6241	Μυτιλήνη	1,162
11	Karpenisi	Θεσσαλία		Θεσσαλία	0,7737	Ευβοια	1,0732
12	Kriti	Κρήτη		Κρήτη	0,6241	Μυτιλήνη	1,1907
	Xelmos-						
	Mauroudata						
13	Stugos	Πελοπόνησος		Πελοπόνησος	0,8742	Ηπειρος	0,9888
	Mutilini-						
14	Agiasos	Μυτιλήνη		Μυτιλήνη	0,7785	Ευβοια	1,4535
	Xelmos-						
15	Ntourntouvana	Πελοπόνησος	#	Ηπειρος	0,9632	Πελοπόνησος	0,9805
16	Olympos	Θεσσαλία		Θεσσαλία	0,9084	Μακεδονία	0,9569
17	Paggaio	Μακεδονία		Μακεδονία	1,0908	Θεσσαλία	1,3647
18	Samothraki.	Μακεδονία		Μακεδονία	0,8836	Κρήτη	1,0079
19	Taigetos Mani	Πελοπόνησος		Πελοπόνησος	0,7443	Θεσσαλία	0,8299
	Tzoumerka-						
	Surrako-						
20	Iwannina	Ηπειρος		Ηπειρος	0,8985	Πελοπόνησος	1,0073
21	Parnwna Agrio	Πελοπόνησος		Πελοπόνησος	0,9824	Θεσσαλία	1,0551
22	Falakrou Agrio	Μακεδονία		Μακεδονία	0,9293	Θεσσαλία	0,9494
	Tsepelovo-						
23	Iwannina	Ηπειρος		Ηπειρος	0,7546	Πελοπόνησος	0,8429
			<				
24	Timfi-Iwannina	Ηπειρος	>	Πελοπόνησος	0,7722	Ηπειρος	0,874
	Flwrina-						
25	Filiwtas	Μακεδονία		Μακεδονία	1,0851	Πελοπόνησος	1,1408
	Lampeia Ori-						
26	Ileia	Πελοπόνησος		Πελοπόνησος	1,0851	Ηπειρος	1,2652

4.2.2.2. Διαχωρισμός των εξομαλυνθέντων Kubelka-Munk φασμάτων FT-IR

Τα φάσματα που υπέστησαν εξομάλυνση χωρίς τη μέθοδο Kubelka-Munk εισήχθησαν στο λογισμικό πρόγραμμα TQ Analyst, προκειμένου να υποστούν διαχωριστική ανάλυση με βάση τις κλάσεις που αναφέρονται παραπάνω στο 4.2.2.

4.2.2.2.1 Άνθη

. Η φασματική περιοχή που επιλέχθηκε είναι η εξής:

- 1. 1^η περιοχή: 1.485-1297 cm⁻¹
- 2. 2^{η} περιοχή: 1.198-1.924 cm⁻¹ (δεύτερη παράγωγος)

1η περιοχή: Περιέχει χαρακτηριστική κορυφή που αποδίδεται στη λιγνίνη στη περιοχή γύρω στα 1506 cm⁻¹, (Pappas et al. 1998, Vivekanand et al. 2014). Παρουσιάζει μια κορυφή στη περιοχή 1434-1421 cm⁻¹, που υποδηλώνει την ύπαξη πηκτίνών (Schulz et al. 2007). Στα 1.374 cm⁻¹περίπου αποδίδονται δονήσεις κάμψης του CH₂, που χαρακτηριζουν τη κυτταρίνη (Alonso-Simon et al. 2004) και δονήσεις κάμψης του –OH της κυτταρίνης (Pappas et al. 2002). Η απορρόφηση στα 1335-1321 cm⁻¹ αντιπροσωπεύει

Εικόνα 4.28 Ενδεικτική περιοχή επιλογής για τον διαχωρισμό ανάλυσης

\2^η περιοχή: Η περιοχη 1169-1162 cm⁻¹ αποδίδεται στη δόνηση τάσης C-O-C γλυκοζιδικού δεσμού της κυτταρίνης (Alonso-Simon et al. 2004) και στη περιοχή γύρω του 1116 cm⁻¹ παρουσιάζει αντισυμμετρική τάση του γλυκοζιδικού δεσμού.

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.29 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλην δύο διαχωρίστηκαν πλήρως. . Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.2. ανέρχεται στο 92%.

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.14 Στον πίνακα 4.14 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινομησής τους. Το φάσμα 13 και 24 του πίνακα 4.14 είναι τα μόνα που δεν ταξινομήθηκαν επιτυχώς. Η πραγματική κλάση που ανήκει τα φάσματα 13 και 24 (Στυγός Χελμού και Τύμφη Ιωαννίνων) είναι η Πελοπόνησος και η Ήπειρος, ενώ κατατάσσονται στη Θεσσαλία και στην Έυβοια. Η επόμενη κλαση που κατατάσεται το φάσμα 24 διαφέρει πάλι από τη πραγματική του κλάση μιας και ταξινομείται στην Ήπειρο.

Εικόνα 4.29 Διαχωρισμός των άνθεωνν των Kubelka-Munk φασμάτων απορρόφησης με βάση τη γεωγραφική ταξινόμηση του Sideritis στη περιοχή 1.485 -1297 cm-1 και 1.198-924 cm-1 (δεύτερη παράγωγος)

Πέραν της συγκεκριμμένης ανάλυσης το φάσμα 24 εντοπίζεται και κατά τη διαχωριστική ανάλυση των εξομαλυνθέντων φασμάτων, παρόλο που οι επιλογόμενες ζώνες απορρόφησης διαφέρουν. Ο αριθμός των αποτυχημένων ταξινομήσεων είναι ίδιος και για τις δύο αναλύσεις.

			Calculated			Next
Index	Spectrum Title	Actual Class	Class	Distance	Next Class	Distance
1	Agrafa-Thrapsimi	Θεσσαλία	Θεσσαλία	0,9957	Κρήτη	1,1968
2	Alwnistaina- Arkadia	Πελοπόνησος	Πελοπόνησος	1,0908	Κρήτη	1,4357
	Magnisia- Anavra-					
3	Orthis	Θεσσαλία	Θεσσαλία	0,7811	Κρήτη	1,0262
	Anatoliko Mainalo-					
4	Butina Arkadia	Πελοπόνησος	Πελοπόνησος	0,9459	Κρήτη	1,0089
5	Armanitsa Preveza	Ηπειρος	Ηπειρος	0,7246	Μακεδονία	0,836
6	Brynaina- Magnisias	Θεσσαλία	Θεσσαλία	1,0189	Μακεδονία	1,1346
7	Euvoias Agrio	Ευβοια	Ευβοια	0,7262	Μακεδονία	0,8607
8	Dirfys -Euvoia	Ευβοια	Ευβοια	0,7262	Ηπειρος	0,7784
	Thesprwtia-					
9	Aulotopos- Souli	Ηπειρος	Ηπειρος	0,6594	Ευβοια	1,0846

Πίνακας 4.14 Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

10	Ierapetra-Kriti	Κρήτη		Κρήτη	0,4514	Πελοπόνησος	0,7234
11	Karpenisi	Θεσσαλία		Θεσσαλία	0,7299	Κρήτη	1,1072
12	Kriti	Κρήτη		Κρήτη	0,4514	Πελοπόνησος	0,7874
	Xelmos- Mauroudata						
13	Stugos	Πελοπόνησος	#	Θεσσαλία	0,7822	Ηπειρος	0,8648
14	Mutilini-Agiasos	Μυτιλήνη		Μυτιλήνη	0	Ευβοια	1,7849
	Xelmos-						
15	Ntourntouvana	Πελοπόνησος		Πελοπόνησος	1,0749	Θεσσαλία	1,3809
16	Olympos	Θεσσαλία		Θεσσαλία	0,8434	Ηπειρος	1,1781
17	Paggaio	Μακεδονία		Μακεδονία	0,8916	Ευβοια	1,0465
18	Samothraki	Μακεδονία		Μακεδονία	0,7853	Θεσσαλία	0,898
19	Taigetos Mani	Πελοπόνησος		Πελοπόνησος	0,994	Ηπειρος	1,0469
	Tzoumerka-Surrako-						
20	Iwannina	Ηπειρος		Ηπειρος	0,8227	Μακεδονία	0,8613
21	Parnwna Agrio	Πελοπόνησος		Πελοπόνησος	1,0434	Κρήτη	1,0547
22	Falakrou Agrio	Μακεδονία		Μακεδονία	1,0792	Ηπειρος	1,3211
23	Tsepelovo-Iwannina	Ηπειρος		Ηπειρος	0,6938	Πελοπόνησος	0,8922
24	Timfi-Iwannina	Ηπειρος	#	Ευβοια	0,762	Ηπειρος	0,845
25	Flwrina-Filiwtas	Μακεδονία		Μακεδονία	1,0129	Ηπειρος	1,3704

4.2.2.2. Φύλλα/Βράκτια

Η φασματική περιοχή που επιλέχθηκε είναι η εξής:

1. 1^η περιοχή: 1.546-1.299 cm⁻¹

Εικόνα 4.30 Ενδεικτική περιοχή επιλογής για τον διαχωρισμό ανάλυσης

1^η περιοχή: Χαρακτηριστική κορυφή που αποδίδεται στη λιγνίνη αποτελεί η περιοχή των 1506 cm⁻¹, που οφείλεται συγκεκριμένα στη παραμόρφωση αρωματικού δακτυλίου

της λιγνίνης (Pappas et al. 1998, Vivekanand et al. 2014). Επίσης παρουσιάζει μια κορυφή στη περιοχή 1434-1421 cm⁻¹, που υποδηλώνει την ύπαρξη πηκτινών (Schulz et al. 2007). Περίπου στα 1.374 cm⁻¹ και 1335-1321 αποδίδονται η κυτταρίνη (Alonso-Simon et al. 2004, Pappas et al. 2002) και πολυσάκχαρα (Schulz et al. 2007).

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.31 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλην ενός διαχωρίστηκαν πλήρως. . Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.2. ανέρχεται στο 96,29 %.

Εικόνα 4.31 Διαχωρισμός των φύλλων/βρακτίων των Kubelka-Munk φασμάτων απορρόφησης με βάση τη γεωγραφική ταξινόμηση του Sideritis στη περιοχή 1.546-1.299 cm-1

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.15 Στον πίνακα 4.15 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινόμησης τους. Το φάσμα 14 του πίνακα είναι το μόνο που δεν ταξινομήθηκε επιτυχώς. Η πραγματική κλάση που ανήκει το φάσμα 14 (Στυγός Χελμού) είναι η Πελοπόννησος, ενώ κατατάσσεται στη Μακεδονία. Η επόμενη κλάση που τα κατατάσσει διαφέρει πάλι από τη πραγματική και ταξινομείται στην Ήπειρο. Το φάσμα 14 εντοπίζεται και στη διαχωριστική ανάλυση των εξομαλυνθέντων φασμάτων ως φάσμα μη επιτυχούς ταξινόμησης.

Η συγκεκριμένη διαχωριστική ανάλυση είναι πιο πετυχημένη από αυτή των εξομαλυνθέντων φασμάτων, γιατί μειώνεται ο αριθμός των αποτυχημένων ταξινομήσεων

Πίνακας 4.15 Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

				Calculated			Next
Index	Spectrum Title	Actual Class		Class	Distance	Next Class	Distance
	Agrafa-Thrapsimi-						
1	Karditsa	Θεσσαλία		Θεσσαλία	1,101	Ηπειρος	1,5071
2	Alwnistaina-Arkadia	Πελοπόνησος		Πελοπόνησος	0,805	Κρήτη	1,322
	Magnisia- Anavra-						
3	Orthis	Θεσσαλία		Θεσσαλία	0,6413	Ηπειρος	0,9214
	Anatoliko Mainalo-						
4	Butina Arkadia	Πελοπόνησος		Πελοπόνησος	0,8462	Ευβοια	0,9259
5	Armanitsa Preveza	Ηπειρος		Ηπειρος	0,5997	Θεσσαλία	1,0124
6	Brynaina- Magnisias	Θεσσαλία		Θεσσαλία	0,8952	Μακεδονία	0,9437
7	Euvoias Agrio	Ευβοια		Ευβοια	0,6194	Κρήτη	0,903
8	Dirfys -Euvoia	Ευβοια		Ευβοια	0,6194	Πελοπόνησος	1,4267
	Thesprwtia-						
9	Aulotopos- Souli	Ηπειρος		Ηπειρος	0,644	Θεσσαλία	1,1201
10	Ierapetra-Kriti	Κρήτη		Κρήτη	0,8874	Ευβοια	1,0376
11	Karpenisi	Θεσσαλία		Θεσσαλία	0,8299	Ευβοια	0,8946
12	Kriti	Κρήτη		Κρήτη	0,8874	Θεσσαλία	1,4256
13	Lampeia Ori- Ileia	Πελοπόνησος		Πελοπόνησος	0,9773	Ηπειρος	1,5217
	Xelmos- Mauroudata						
14	Stugos	Πελοπόνη σ ος	\diamond	Μακεδονία	0,9686	Ηπειρος	0,9845
	Mutilini- Agiasos						
15	(xwris anti)	Μυτιλήνη		Μυτιλήνη	0,8854	Πελοπόνησος	1,8278
	Xelmos-						
16	Ntourntouvana	Πελοπόνη σ ος		Πελοπόνησος	0,804	Μακεδονία	1,1538
17	Olympos	Θεσσαλία		Θεσσαλία	0,9617	Ηπειρος	1,2912
18	Pagaio	Μακεδονία		Μακεδονία	0,7831	Θεσσαλία	0,9928
19	Samothraki	Μακεδονία		Μακεδονία	1,0397	Κρήτη	1,1424
20	Taigetos Mani	Πελοπόνησος		Πελοπόνησος	0,6629	Μακεδονία	1,0477
	Tzoumerka-Surrako-						
21	Iwannina .	Ηπειρος		Ηπειρος	1,0075	Θεσσαλία	1,1799
22	Parnwna(agrio)	Πελοπόνησος		Πελοπόνησος	0,7649	Μακεδονία	1,2547
23	Falakrou	Μακεδονία		Μακεδονία	0,9936	Πελοπόνησος	1,2824
24	Tsepelovo-Iwannina	Ηπειρος		Ηπειρος	0,5932	Θεσσαλία	1,046
25	Timfi-Iwannina	Ηπειρος		Ηπειρος	0,994	Θεσσαλία	1,3248
26	Flwrina- Filiwtas	Μακεδονία		Μακεδονία	1,0424	Κρήτη	1,2179

4.2.2.3. Στελέχη

. Η φασματική περιοχή που επιλέχθηκε είναι η εξής:

- 1. 1^η περιοχή: 1.487-1.297 cm⁻¹
- 2. 2η περιοχή: 1.193-931 cm⁻¹(δεύτερη παράγωγος)

1η περιοχή: Στη περιοχή εντοπίζονται κορυφές απορρόφησης στις περιοχές 14341421 cm-1, 1.374 cm-1και 1335-1321 cm-1 που υποδηλώνουν τις πηκτίνες (Schulz et al.
2007) τη κυτταρίνη (Alonso-Simon et al. 2004, Pappas et al. 2002) και πολυσάκχαρα (Schulz et al. 2007)αντίστοιχα..

2^η περιοχή: Η περιοχή 1169-1162 cm⁻¹ αποδίδεται στη δόνηση τάσης C-O-C γλυκοζιδικού δεσμού της κυτταρίνης (Alonso-Simon et al. 2004) και στη περιοχή γύρω του 1116 cm⁻¹ παρουσιάζει αντισυμμετρική τάση του γλυκοζιδικού δεσμού.

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.33 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλην δύο διαχωρίστηκαν πλήρως. . Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.2. ανέρχεται στο 92,59 %.

Εικόνα 4.32 Ενδεικτική περιοχή επιλογής για τον διαχωρισμό ανάλυσης

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.16 Στον πίνακα 4.16 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινόμησης τους. Το φάσμα 3 του

πίνακα 4.16 είναι τα μόνα που δεν ταξινομήθηκαν επιτυχώς. Η πραγματική κλάση που ανήκει το φάσμα 3 και 18 (Ανάβρα-Όρθυς Μαγνησία, Σαμοθράκη) είναι η Θεσσαλία, και η Μακεδονία αντίστοιχα, ενώ κατατάσσονται στην Εύβοια και στη Θεσσαλία αντίστοιχα.

Εικόνα 4.33 Διαχωρισμός των στελεχών των Kubelka-Munk φασμάτων απορρόφησης με βάση τη γεωγραφική ταξινόμηση του Sideritis στη περιοχή 1.487-1.297 cm⁻¹ και 1.193-931 cm⁻¹ (δεύτερη παράγωγος)

Οι περιοχές επιλογής διαφέρουν εντελώς με αυτές των εξομαλυσμένων φασμάτων, όπως αντίστοιχα και τα φάσματα που δεν ταξινομήθηκαν επιτυχώς. Παρόλα αυτά ενώ δεν υπάρχει κάποιο κοινό σημείο των δύο διαχωριστικών αναλύσεων , η ανάλυση με τη μέθοδο με Kubelka-Munk φαίνεται πως μειώνει τον αριθμό των μη ταξινομημένων φασμάτων. Όσον αφορα τη διαχωριστική ανάλυση των τριών τμημάτων του φυτικού υλικού (φύλλα/βράκτια, στελέχη και άνθη) που πραγματοποιήθηκε με τη μέθοδο Kubalka-Munk, τα φύλλα/βράκτια κατέχουν το μεγαλύτερο ποσοστό ενώ τα άνθη το μικρότερο.

Index	Spectrum Title	Actual Class		Calculated Class	Distance	Next Class	Next Distance
1	Agrafa-Thrapsimi- Karditsa	Θεσσαλία		Θεσσαλία	0,9284	Μακεδονία	1,0156
2	Alwnistaina- Arkadia	Πελοπόνησος		Πελοπόνησος	0,847	Ηπειρος	1,3612
3	Magnisia- Anavra- Orthis	Θεσσαλία	\diamond	Ευβοια	0,8798	Θεσσαλία	0,9278

	A A Z	,	C /	Z A
Πινακας 4.16	Αποτελεσματα κα	ι αποστασεις της ι	διαγωριστική	· αναλησης
III WILLING III V			or when the country	

	Anatoliko Mainalo-						
4	Butina Arkadia	Πελοπόνησος		Πελοπόνησος	0,5391	Μακεδονία	1,2325
5	Armanitsa Preveza	Ηπειρος		Ηπειρος	1,0654	Πελοπόνησος	1,3602
	Brynaina-						
6	Magnisias	Θεσσαλία		Θεσσαλία	0,9766	Μακεδονία	1,203
7	Euvoias Agrio	Ευβοια		Ευβοια	0,7946	Θεσσαλία	1,2228
8	Dirfys -Euvoia	Ευβοια		Ευβοια	0,7946	Θεσσαλία	1,0174
	Thesprwtia-						
9	Aulotopos- Souli	Ηπειρος		Ηπειρος	0,8384	Μακεδονία	1,2187
10	Ierapetra-Kriti	Κρήτη		Κρήτη	0,6916	Θεσσαλία	1,6295
11	Karpenisi	Θεσσαλία		Θεσσαλία	0,5425	Ευβοια	1,0293
12	Kriti	Κρήτη		Κρήτη	0,6916	Θεσσαλία	1,2188
	Xelmos-						
13	Mauroudata Stugos	Πελοπόνησος		Πελοπόνησος	0,5253	Ηπειρος	0,9584
14	Mutilini-Agiasos	Μυτιλήνη		Μυτιλήνη	0	Κρήτη	3,6055
	Xelmos-						
15	Ntourntouvana	Πελοπόνησος		Πελοπόνησος	0,9994	Ευβοια	1,3749
16	Olympos	Θεσσαλία		Θεσσαλία	0,9106	Μακεδονία	0,9362
17	Paggaio	Μακεδονία		Μακεδονία	1,0456	Θεσσαλία	1,3084
18	Samothraki	Μακεδονία	\diamond	Θεσσαλία	0,784	Μακεδονία	0,8133
19	Taigetos Mani	Πελοπόνησος		Πελοπόνησος	1,0787	Μακεδονία	1,2469
	Tzoumerka-						
20	Surrako- Iwannina	Ηπειρος		Ηπειρος	1,1209	Πελοπόνησος	1,953
21	Parnwna Agrio	Πελοπόνησος		Πελοπόνησος	0,8506	Μακεδονία	1,0944
22	Falakrou Agrio	Μακεδονία		Μακεδονία	0,9984	Θεσσαλία	1,3878
23	Tsepelovo-Iwannina	Ηπειρος		Ηπειρος	0,6899	Πελοπόνησος	1,1731
24	Timfi-Iwannina	Ηπειρος		Ηπειρος	0,628	Μακεδονία	1,189
25	Flwrina- Filiwtas	Μακεδονία		Μακεδονία	1,0462	Πελοπόνησος	1,1524
	Anavra–Orthis						
26	Magnisiaa	\Θεσσαλία		Θεσσαλία	1,0462	Πελοπόνησος	1,1524

4.2.2.3. Διαχωρισμός των κανονικοποιημένων φασμάτων FT-IR

Τα κανονικοποιημένα φάσματα του γένους *Sideritis* εισήχθησαν στο λογισμικό πρόγραμμα TQ Analyst, προκειμένου να υποστούν διαχωριστική ανάλυση με βάση τις κλάσεις που αναφέρονται παραπάνω στο 4.2.2.

4.2.2.3.1 Άνθη

. Η φασματική περιοχή που επιλέχθηκε είναι η εξής:

1. 1^η περιοχή: 1.697-1.486 cm⁻¹

1^η περιοχή: Όσον αφορά τις απορροφήσεις της περιοχής αυτής εντοπίζονται γύρω στα 1650 cm⁻¹ υποδηλώνοντας την ύπαρξη απορροφόμενου νερού (Pappas et al. 2002, Pappas et al. 1998) και του αμδίου I (Basbasi et al.2014, Pappas et al. 1998, Schulz et al. 2007). Στα 1600 cm⁻¹ σύμφωνα με τους Chatjigakis et al. (1998) απορροφούν οι πηκτίνες. Επίσης χαρακτηριστική κορυφή αποδίδει η λιγνίνη στη περιοχή των 1506 cm⁻¹ (Pappas et al. 1998, Vivekanand et al. 2014).

Εικόνα 4.34 Ενδεικτική περιοχή επιλογής για τον διαχωρισμό ανάλυσης

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.35 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλην ενός διαχωρίστηκαν πλήρως. . Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.2. ανέρχεται στο 96%.

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.17. Στον πίνακα 4.17 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινόμησης τους. Το φάσμα 21 του πίνακα 4.17 είναι το μόνο που δεν ταξινομήθηκε επιτυχώς. Η πραγματική κλάση που ανήκει το φάσμα 21 (Τσάι Πάρνωνα) είναι η Πελοπόννησος, ενώ κατατάσσεται στη Κρήτη. Παρόμοια αποτελέσματα εμφανίζονται στη διαχωριστική ανάλυση εξομαλυσμένων φασμάτων, με το φάσμα 21 να χαρακτηρίζεται πάλι ως μη επιτυχώς ταξινομημένο. Παρόλα αυτά ο διαχωρισμός άνθεων κανονικοποιημένων φασμάτων είναι περισσότερο επιτυχής σε σχέση με τις άλλες μεθόδους, εξαιτίας μικρότερου αριθμού μη ταξινομημένων φασμάτων.

Εικόνα 4.35 Διαχωρισμός των άνθεων των κανονικοποιημένων φασμάτων απορρόφησης με βάση τη γεωγραφική ταξινόμηση του Sideritis στη περιοχή 1.697-1.486 cm⁻¹

			Calculated			Next
Index	Spectrum Title	Actual Class	Class	Distance	Next Class	Distance
	Agrafa-Thrapsimi-					
1	Karditsa	Θεσσαλία	Θεσσαλία	1,0351	Μακεδονία	1,2027
		Πελλοπόνη σ ο	Πελλοπόνη σ ο			
2	Alwnistaina-Arkadia	ς	ς	0,9907	Κρήτη	1,4708
	Anavra-Orthis-					
3	Magnisia.	Θεσσαλία	Θεσσαλία	0,7494	Μακεδονία	1,3525
	Anatoliko Mainalo-	Πελλοπόνη σ ο	Πελλοπόνη σ ο			
4	Butina-Arkadia	ς	ς	0,7682	Κρήτη	0,8813
5	Armanitsa-Preveza	Ηπειρος	Ηπειρος	0,7386	Μακεδονία	0,8938
6	Brynaina Magnisias	Θεσσαλία	Θεσσαλία	0,9066	Ευβοια	1,5668
7	Euvoias(agrio)	Ευβοια	Ευβοια	0,6538	Θεσσαλία	0,994
8	Dirfis- Euvoia	Ευβοια	Ευβοια	0,6538	Πελλοπόνη σ ος	1,0033
	Thesprwtia-					
9	Aulotopos-Souli	Ηπειρος	Ηπειρος	0,7248	Μακεδονία	1,1368
10	Ierapetra- Kriti	Κρήτη	Κρήτη	0,7426	Πελλοπόνη σ ος	0,9453
11	Karpenisi	Θεσσαλία	Θεσσαλία	0,7943	Πελλοπόνησος	1,2585
12	Kriti	Κρήτη	Κρήτη	0,7426	Πελλοπόνησος	0,9905
13	Xelmos-Mauroudata	Πελλοπόνησο	Πελλοπόνησο	0,9447	Κρήτη	1,0326

Πίνακας 4.17 Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

	Stugos	ς		ς			
14	Agiasos-Mutilini	Μυτιλήνη		Μυτιλήνη	0	Κρήτη	1,9066
	Xelmos-	Πελλοπόνησο		Πελλοπόνη σ ο			
15	Ntourntouvana	ς		ς	0,8973	Ευβοια	1,0074
16	Olympos	Θεσσαλία		Θεσσαλία	1,0082	Μακεδονία	1,1082
17	Paggaio	Μακεδονία		Μακεδονία	0,7059	Θεσσαλία	1,0545
18	Samothraki	Μακεδονία		Μακεδονία	1,0755	Θεσσαλία	1,2897
		Πελλοπόνησο		Πελλοπόνη σ ο			
19	Taigetos-Mani	ς		ς	0,9885	Κρήτη	1,0882
	Tzoumerka-Surrako-						
20	Iwannina	Ηπειρος		Ηπειρος	0,8227	Μακεδονία	1,2658
		Πελλοπόνησο					
21	Parnwna (agrio)	ς	\diamond	Κρήτη	1,0376	Πελλοπόνη σ ος	1,0389
22	Falakrou (agrio)	Μακεδονία		Μακεδονία	0,9823	Ηπειρος	1,1145
23	Tsepelovo-Iwannina	Ηπειρος		Ηπειρος	0,5772	Ευβοια	0,9958
24	Timfi-Iwannina	Ηπειρος		Ηπειρος	0,8832	Ευβοια	0,888
25	Flwrina-Filiwtas	Μακεδονία		Μακεδονία	1,0644	Ηπειρος	1,5017

4.2.3.2. Φύλλα/Βράκτια

. Η φασματική περιοχή που επιλέχθηκε είναι η εξής:

1. 1^η περιοχή: 1.485-1.196 cm⁻¹

1^η περιοχή: Στη περιοχή εντοπίζονται κορυφές απορρόφησης στις περιοχές 1434-1421 cm⁻¹, 1.374 cm⁻¹και 1335-1321 cm⁻¹ που υποδηλώνουν τις πηκτίνες (Schulz et al. 2007) τη κυτταρίνη (Alonso-Simon et al. 2004, Pappas et al. 2002) και πολυσάκχαρα (Schulz et al. 2007)αντίστοιχα. Η κορυφή στη περιοχή 1249-1229 cm⁻¹ σχετίζεται με την ύπαρξη κυτταρίνης (Pappas et al. 2002) DNA και λιγνίνης (Vivekanand et al. 2014).

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.37 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλην δύο διαχωρίστηκαν πλήρως. . Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.2. ανέρχεται στο 92,59%.

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.18 Στον πίνακα 4.18 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινόμησης τους. Τα φάσματα 5 και 21 του πίνακα 4.18 είναι τα μόνα που δεν ταξινομήθηκαν επιτυχώς. Η πραγματική κλάση που ανήκει το φάσμα 5 και 21 (Αρμανίτσα-Πρέβεζας και Ιεράπετρα Κρήτης) είναι η Ήπειρος και η Κρήτη, ενώ κατατάσσεται στη Πελοπόνησο και στην Εύβοια. Η περιοχή επιλογής έρχεται σε αντιστοιχία με αυτή της ανάλυσης Kubelka-Munk, αλλά σε καμία από τις τρεις μεθόδους δεν εμφανίζονται όμοια «φάσματα αποτυχημένης ταξινόμησης». Στη περιπτωση των φύλλων/βρακτίων η διαχωριστική ανάλυση Kubelka-Munk δίνει τα καλυτερα αποτελεσματα.

Εικόνα 4.37 Διαχωρισμός των φύλλων/βρακτίων των κανονικοποιημένων φασμάτων απορρόφησης με βάση τη γεωγραφική ταξινόμηση του Sideritis στη περιοχή 1.485-1.196 cm-1

				Coloulated			Novt
Index	Spectrum Title	Actual Class		Class	Distance	Next Class	Distance
	Agrafa-Thrapsimi-						
1	Karditsa	Θεσσαλία		Θεσσαλία	1,0561	Κρήτη	1,8283
	Alwnistaina-						
2	Arkadia	Πελοπόνησος		Πελοπόνησος	0,6984	Μακεδονία	1,0121
	Anavra-Orthys-						
3	Magnisia	Θεσσαλία		Θεσσαλία	0,7314	Πελοπόνησος	0,8586
	Anatoliko						
	Mainalo- Butina-						
4	Arkadia	Πελοπόνησος		Πελοπόνησος	0,608	Μακεδονία	1,2579
5	Armanitsa-Preveza	Ηπειρος	\diamond	Πελοπόνη σ ος	0,8046	Ηπειρος	0,9632
	Brynaina						
6	Magnisias	Θεσσαλία		Θεσσαλία	0,7937	Πελοπόνησος	1,1544
7	Euvoias(agrio)	Ευβοια		Ευβοια	0,6806	Κρήτη	1,3253
8	Dirfis- Euvoia	Ευβοια		Ευβοια	0,6806	Θεσσαλία	1,3711
	Thesprwtia-						
9	Aulotopos-Souli	Ηπειρος		Ηπειρος	0,8274	Μακεδονία	1,2924
10	Ierapetra- Kriti	Κρήτη	\diamond	Ευβοια	0,8296	Κρήτη	0,9065
11	Karpenisi	Θεσσαλία		Θεσσαλία	0,6488	Πελοπόνησος	1,3676
12	Kriti	Κρήτη		Κρήτη	0,9065	Μυτιλήνη	1,6588
	Lampeia Ori-Divri-						
13	Ileia	Πελοπόνησος		Πελοπόνησος	1,0699	Θεσσαλία	1,5759
	Xelmos-						
14	Mauroudata Stugos	Πελοπόνησος		Πελοπόνησος	0,7459	Ηπειρος	1,3081
15	Agiasos-Mutilini	Μυτιλήνη		Μυτιλήνη	0,755	Κρήτη	1,3893
	Xelmos-						
16	Ntourntouvana	Πελοπόνησος		Πελοπόνησος	0,8885	Μακεδονία	1,0164
17	Olympos	Πελοπόνησος		Πελοπόνησος	1,1209	Μακεδονία	1,2395
18	Paggaio	Μακεδονία		Μακεδονία	0,8381	Ηπειρος	0,8936
19	Samothraki	Μακεδονία		Μακεδονία	1,09	Πελοπόνησος	1,5214
20	Taigetos- Mani	Πελοπόνησος		Πελοπόνησος	0,6149	Μακεδονία	1,0887
	Tzoumerka-						
21	Surrako- Iwannina	Ηπειρος		Ηπειρος	1,0013	Μακεδονία	1,3475
22	Parnwas (agrio)	Πελοπόνησος		Πελοπόνησος	0,7144	Μακεδονία	1,3423
23	Falakrou (agrio)	Μακεδονία		Μακεδονία	1,0857	Ηπειρος	1,5541
	Tsepelovo-						
24	Iwannina	Ηπειρος		Ηπειρος	0,6388	Μακεδονία	1,2227
25	Timfi-Iwannina	Ηπειρος		Ηπειρος	1,0364	Μακεδονία	1,4812
26	Flwrina- Filiwtas	Μακεδονία		Μακεδονία	0,9643	Πελοπόνησος	1,1641

Πίνακας 4.18 Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

4.2.3.3. Στελέχη

. Η φασματική περιοχή που επιλέχθηκε είναι η εξής:

1. 1^η περιοχή: 1.485-1.193 cm⁻¹

1η περιοχή: Παρουσιάζει μια κορυφή στη περιοχή 1434-1421 cm-¹, που υποδηλώνει τη ύπαρξη πηκτινών (Schulz et al. 2007). Επίσης περίπου στα 1.374 cm⁻¹ αποδίδονται δονήσεις που υποδηλώνουν τη παρουσία της κυτταρίνης (Alonso-Simon et al. 2004, Pappas et al. 2002). Η απορρόφηση στα 1335-1321 cm-1 αντιπροσωπεύει τις δονήσεις πολυσακχάρων (Schulz et al. 2007), ενώ η κορυφή στη περιοχή 1249-1229 cm⁻¹ σχετίζεται δόνηση της κυτταρίνης (Pappas et al. 2002) του DNA και της λιγνίνης (Vivekanand et al. 2014).

Για τη φασματική περιοχή που επιλέχθηκε χρησιμοποιήθηκαν 10 κύριες συνιστώσες, οι οποίες περιγράφουν πάνω από το 99% της φασματικής μεταβολής. Στην εικόνα 4.39 που ακολουθεί φαίνεται, πως όλα τα φάσματα πλην δύο διαχωρίστηκαν πλήρως. . Το ποσοστό επιτυχούς ταξινόμησης των φασμάτων με βάσει τις κλασεις που ορίζονται στο 4.2.2. ανέρχεται στο 92,59%.

Τα αποτελέσματα της διαχωριστικής ανάλυσης γίνονται πιο κατανοητά με τη παράθεση του πίνακα 4.19 Στον πίνακα 4.19 παρουσιάζονται οι αποστάσεις των φασμάτων κάθε δείγματος από την πραγματική κλάση ταξινόμησης τους. Τα φάσματα 18 και 27 του πίνακα 4.19 είναι τα μόνα που δεν ταξινομήθηκαν επιτυχώς. Η πραγματική κλάση που ανήκει το φάσμα 18 και 27 (Ολυμπος και Τσάι Πάρνωνα) είναι η Θεσσαλία

και στη Μακεδονία, ενώ κατατάσσεται στη Μακεδονία και στην Έυβοια. Η επόμενη κλάση ταξινόμησης του φάσματος 27 συνεχίζεί να έχει απόκλιση από τη πραγματική κλάση του, μιας και το ταξινομεί στη κλάση Ήπειρος.

Εικόνα 4.39 Διαχωρισμός των στελεχών των κανονικοποιημένων φασμάτων απορρόφησης με βάση τη γεωγραφική ταξινόμηση του *Sideritis* στη περιοχή 1.485 -1.193 cm-1

Η ζώνη απορρόφησης που επιλέχτηκε, έρχεται σε αντιστοιχία με αυτή της ανάλυσης Kubelka-Munk, αλλά σε καμία από τις τρεις μεθόδους δεν εμφανίζονται όμοια «φάσματα αποτυχημένης ταξινόμησης». Στη περίπτωση των στελεχών οι διαχωριστικές αναλύσεις με τη μέθοδο Kubelka-Munk και της κανονικοποίησης δίνει τα ίδια αποτέλεσμα, αλλά εμφανώς πιο βελτιωμένα σε σχέση με τα εξομαλυνθέτα. Όσον αφορά τη διαχωριστική ανάλυση τω κανονικοποιημένων στα τρία τμήματα του φυτικού υλικού(φύλλα/βράκτια, στλέχη και άνθη) φαίνεται πως τα άνθη διαθέτουν το υψηλότερο ποσοστό επιτυχούς ταξινόμησης. Σε αντίθεση με τη βοτανική ταξινόμηση του γένους Sideritis, κατα τη διαχωριστική ανάλυση που αφορά τη γεωγραφική ταξινόμηση τα αποτελέσματα δεν είναι τόσο ξεκάθαρα.

				Calculated			Novt
Index	Spectrum Title	Actual Class		Class	Distance	Next Class	Distance
	Agrafa-						
	Thrapsimi-						
1	Karditsa	Θεσσαλία		Θεσσαλία	0,869	Μακεδονία	1,2065
	Alwnisstaina-						
2	Arkadia	Πελλοπόνησος		Πελλοπόνησος	0,5748	Ηπειρος	0,8769
	Anavra-Orthys-						
3	Magnisia	Θεσσαλία		Θεσσαλία	0,9285	Ευβοια	1,0746
	Anatoliko						
	Mainalo- Butina-						
4	Arkadia	Πελλοπόνησος		Πελλοπόνησος	0,6792	Ευβοια	1,1548
	Armanitsa-						
5	Preveza	Ηπειρος		Ηπειρος	1,0812	Ευβοια	1,4825
	Brynaina						
6	Magnisias	Θεσσαλία		Θεσσαλία	1,0889	Μακεδονία	1,3146
7	Euvoias(agrio)	Ευβοια		Ευβοια	0,7582	Πελλοπόνησος	1,0885
8	Dirfis- Euvoia	Ευβοια		Ευβοια	0,7582	Ηπειρος	0,8995
	Thesprwtia-						
9	Aulotopos-Souli	Ηπειρος		Ηπειρος	0,677	Πελλοπόνησος	1,0855
10	Ierapetra Kritis	Κρήτη		Κρήτη	0,6631	Ευβοια	1,2446
11	Karpenisi	Θεσσαλία		Θεσσαλία	0,5143	Μακεδονία	1,112
12	Kriti	Κρήτη		Κρήτη	0,6631	Πελλοπόνησος	1,3144
13	Lampeia Ori- Ileia	Πελλοπόνησος		Πελλοπόνησος	1,1504	Ευβοια	1,5174
	Xelmos-						
	Mauroudata						
14	Stugos	Πελλοπόνησος		Πελλοπόνησος	0,6572	Ηπειρος	0,9245
15	Agiasos-Mutilini	Μυτιλήνη		Μυτιλήνη	0,7667	Κρήτη	2,4728
	Xelmos-						
16	Ntourntouvana	Πελλοπόνησος		Πελλοπόνησος	0,9354	Ευβοια	1,3268
17	Olympos	Θεσσαλία	#	Μακεδονία	1,0309	Θεσσαλία	1,0567
18	Paggaio	Μακεδονία		Μακεδονία	0,8844	Θεσσαλία	0,942
19	Samothraki	Μακεδονία		Μακεδονία	0,8961	Θεσσαλία	0,897
20	Taigetos-Mani	Πελλοπόνησος		Πελλοπόνησος	1,0095	Ηπειρος	1,1067
	Tzoumerka-						
	Surrako-						
21	Iwannina	Ηπειρος		Ηπειρος	0,8761	Ευβοια	1,2196
22	Falakrou (agrio)	Μακεδονία		Μακεδονία	1,069	Θεσσαλία	1,6191
	Tsepelovo-						
23	Iwannina	Ηπειρος		Ηπειρος	0,7162	Πελλοπόνησος	1,3068
24	Timfi-Iwannina	Ηπειρος		Ηπειρος	0,6163	Ευβοια	1,1747

Πίνακας 4.18 Αποτελέσματα και αποστάσεις της διαχωριστικής ανάλυσης

25	Flwrina-Filiwtas	Ηπειρος		Ηπειρος	1,0071	Θεσσαλία	1,0191
26	Parnwna (agrio)	Μακεδονία	#	Ευβοια	0,8877	Ηπειρος	0,9955

5. Συμπεράσματα

Η φασματοσκοπία FT-IR συνδυασμένη με την διαχωριστική ανάλυση χρησιμοποιήθηκε με στόχο την γεωγραφική και βοτανική ταξινόμηση 27 δειγμάτων Sideritis.

Για το σκοπό αυτό καταγράφηκαν με την τεχνική DRIFTS τα φάσματα των άνθεων, φύλλων/βρακτίων και στελεχών. Τα φάσματα αυτά λειάνθηκαν και διορθώθηκε η βασική τους γραμμή. Στη συνέχεια κανονικοποίηθηκαν ή επεξεργάστηκαν με τον αλγόριθμο Kubelka-Munk. Η διαχωριστική ανάλυση έγινε με χρήση του στατιστικού λογιμικού TQ Analyst.

Οι φασματικές περιοχές περιοχές που επιλέχτηκαν είναι 1.698- 1.485, 1.487-1.190 και 1.195-925 cm⁻¹ (2^η παράγωγος). Στη πρώτη ζώνη απορρόφησης, χαρακτηρίζεται από την ύπαρξη του αμιδίου Ι, των πηκτινών και της λιγνίνης. Στη δεύτερη ζώνη απορρόφησης εντοπίζονται δονήσεις που μαρτυρούν την ύπαρξη πηκτινών, κυτταρίνης, DNA, λιγνίνης και γενικά πολυσακχάρων. Τέλος στη τρίτη περιοχή εντοπίζεται ο γλυκοζιδικός δεσμός της κυτταρίνης.

Για τη βοτανική ταξινόμηση χρησιμοποιήθηκαν επτά κλάσεις-βοτανικά είδη/υποείδη. Η συνολική του διαχωριστική ανάλυση χαρακτηρίζεται από υψηλό ποσοστό επιτυχούς ταξινόμησης, με τα στελέχη να αποτελούν το καταλληλότερο τμήμα του φυτικού υλικού, μιας και έδωσε και με τις τρεις μεθόδους ποσοστό 96%. Όσον αφορά τις τρείς μεθόδους τα αποτελέσματα ήταν σχετικά ίδια. Εξαίρεση αποτέλεσαν τα κανονικοποιημένα φάσματα των φύλλων/βρακτίων, που το ποοσστό επιτυχούς ταξινόμησης στο 96%.

Για τη γεωγραφική ταξινόμηση του γένους Sideritis στον Ελλαδικό χώρο χρησιμοποιήθηκαν επτά κλάσεις-γεωγραφικές περιοχές. Στη συγκεκριμμένη ταξινόμηση η διαφορά των τριών μεθόδων είναι πιο εμφανής, με τις μεθόδους (κανονικοποίησης και Kubelka-Munk) να δίνουν τα πιο βελτιωμένα αποτελέσματα. Όσον αφορά τα τμήματα του φυτικού υλικού τα πράγματα δεν είναι τόσο ξεκάθαρα όσο στη βοτανική ταξινόμηση. Στα κανονικοποιημένα φάσματα τα άνθη διαχωρίζονται επιτυχώς σε ποσοστό 96%, κατέχοντας το μεγαλύτερο ποσοστό. Στα εξομαλυνθέντα φάσματα τα φύλλα/βράκτια βρίσκονται στη πρώτη θέση με ποσοστό 93% και στα φάσματα Kubelka-Munk τα φύλλα/βράκτια διαχωρίζονται επιτυχώς σε ποσοστό 96% και ακολουθολυν τα υπόλοιπα.

96

Η βοτανική ταξινόμηση, όπως φαίνεται με βάση τα ποσοστό επιτυχούς ταξινόμησης ανταποκρίνεται σχετικά καλύτερα στο μοντέλο διαχωρισμού του γένους *Sideritis* με τη μέθοδο FT-IR συνδιασμένη με χημειομετρικές μεθόδους . Τα λιγότερο επιτυχημένα αποτελέσματα της διαχωριστικής ανάλυσης της γεωγραφικής ταξινόμησης πιθανώς να οφείλονται στο ότι οι γεωγραφικές περιοχές που επιλέχτηκάν περιέχουν περισσότερα του ενός βοτανικά είδη ή υποείδη του γένους *Sideritis*.

Παρόλα αυτά και στις δύο ταξινομήσεις τα ποσοστά επιτυχούς ταξινόμησης κυμαίνονται στο 93 με 96%. Το υψηλό αυτό ποσοστό επιβεβαιώνει τον ισχυρισμό ότι η μέθοδος FT-IR σε συνδιασμό με χημειομετρικές μεθόδους αποτελεί ένα σύγχρονο και χρήσιμο εργαλείο για τη γεωγραφική ταξινόμηση των ειδών.

Περαιτέρω μελέτη του γένους για καλύτερη ταξινόμηση του και ισχυροποίηση της μεθόδου μπορεί να επιτευχθεί είτε με την αύξηση των δειγμάτων (φυτικό υλικό), είτε με τη παράλληλη μελέτη των δευτερογενών μεταβολίτων τους για σταντάρισμα της μεθόδου. Με τη μόνη επιφύλαξη για την δεύτερη περίπτωση, της σημαντικής αύξησης του κόστους.

6. Βιβλιογραφία

Διεθνής βιβλιογραφία

- Alonso-Simon Ana, Encina Antonio E., Garcia-Angulo Penelope, Alvarez Jesus M., Acebes Jose' L., (2004), FT-IR spectroscopy monitoring of cell wall modifications during the habituation of bean (Phaseolus vulgaris L.) callus cultures to dichlobenil, Plant Science 167 1273–1281
- Aligiannis N., Kalpoutzakis E., Chinou I. B., and Mitakou S... (2001), Composition and Antimicrobial Activity of the Essential Oils of Five Taxa of *Sideritis* from Greece. J. Agric. Food Chem 49, 811-815.
- Asp NG, Apr 1995. Classification and methodology of food carbohydrates as related to nutritional effects. Am J ClinNutr. 61:930S-937S.
- Ballester-Costa Carmen, Sendra Esther, Fernández-López Juana, Pérez-Álvarez Jose A., Viuda-Martos Manuel, "Chemical composition and in vitro antibacterial properties of essentialoils of four Thymus species from organic growth", *Industrial Crops and Products* 50 (2013), 304–311
- Baser, K.H.C., 2002. Aromatic biodiversity among the flowering plant taxa of Turkey.
- Pure and Applied Chemistry 74, 527–545.Basile Adriana a,*, Senatore Felice b, Gargano Rosalba a, Sorbo Sergio c, Del Pezzo Marisa d, Lavitola Alfredo d, Ritieni Alberto f, Bruno Maurizio g, Spatuzzi Daniela e, Rigano Daniela b, Vuotto Maria Luisa e, (2005). Antibacterial and antioxidant activities in *Sideritis italica* (Miller) Greuter et Burdet essential oils. Journal of Ethnopharmacology 107, 240–248
- Bassbasi M., De Luca M., Ioele G., Oussama A., Ragno G., (2014), Prediction of the geographical origin of butters by partial least square discriminant analysis (PLS-DA) applied to infrared spectroscopy (FTIR) data, Journal of Food Composition and Analysis 33, 210–215
- Caetano S., Ustun B., Hennessy S., Smeyers-Verbeke J., Melssen W., Downey G., Buydens L., Heyden Y. V., (2007) Geographical classification of olive oils by the application of CART and SVM to their FT-IR, J. Chemometrics; 21, 324–334
- Chatjigakis A.K., Pappas C., Proxenia C., Kalantzi O., Rodis P., Polissiou M., (1998), FT-IR spectroscopic determination of the degree of esterification of cell wall
pectins from stored peaches and correlation to textural changes, Carbohydrate Polymers 37, 395–408

- Christy Alfred A., Liang Yi-Zeng, Hui Cui and Kvalheim Olav M., (1933), Effect of particle size on diffuse reflectance infrared spectra of polystyrene spheres, vibrational Spectroscoa: 5, 233-244
- Christy A.A., Kvalheim O.M., Velapoldi R.A., (1995), Quantitative analysis in diffuse reflectance spectrometry A modified Kubelka-Munk equation, Vibrational Spectroscopy 9, 19-27
- Fraga Braulio M, (2012) Phytochemistry and chemotaxonomy of *Sideritis* species from the Mediterranean region. Phytochemistry 76, 7–24
- Fraga, B.M., Hernandez, M.G., Fernandez, C., Santana, J.M., (2009). A chemotaxonomic study of nine Canarian *Sideritis* species. Phytochemistry 70, 1038–1048.
- Ghoumari, H., Benajiba, M.-H., Azmani, A., Garcia-Granados, A., Martinez, A., Parra, A., Rivas, F., Socorro, O., (2005). Ent-kauranoid derivatives from Sideritis moorei. Phytochemistry 66, 1492–1498.
- Gilbert AS, Lancaster RW, (1999), Industrial applications of IR and Raman spectroscopy, vibrational, rotational and Raman spectroscopies
- Gonzalez-Burgos E., M.E. Carretero, M.P. Gomez-Serranillos, (2011). Sideritis spp.: Uses, chemical composition and pharmacological activities. Phytochemistry 76, 7–24
- Greene Ethan F., Tauch Socheata, Webb Ellen, Amarasiriwardena Dulasiri, (2004), Application of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) for the identification of potential diagenesis and crystallinity changes in teeth, Microchemical Journal 76, 141–149
- Jordán María J., Martínez Rosa M., Martínez Monino C., I., Sotomayor Jose A., "Polyphenolic extract and essential oil quality of *Thymus zygis* ssp. gracilis shrubs cultivated under different watering levels", *Industrial Crops And Products* 29 (2009), 145–153
- Kacurakova ,M., Capek P., Sasinkova V., Wellner N., Ebringerova A., (2000), FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses, Carbohydrate Polymers 43,195±203
- Karoui R., Bosset J.-O., Mazerolles G., Kulmyrzaev A., Dufour E., (2005). Monitoring the geographic origin of both experimental French Jura hard cheeses and

Swiss Gruyere and L'Etivaz PDO cheeses using mid-infrared and fluorescence spectroscopies: a preliminary investigation, International Dairy Journal ,15, 275–286

- Koedama Arthur, (1986), Volatile Oil Composition of GreekMountain Tea (*Sideritis* spp.) *J. Sci. FoodAgric.*, 36,681-684
- Koutsaviti1 A., Bazos I., Milenkovic M., Pavlovic-Drobac M. and Tzakou O.*, (2013), Antimicrobial Activity and Essential Oil Composition of Five *Sideritis* taxa of *Empedoclia* and *Hesiodia* Sect. from Greece, *Rec. Nat. Prod.* 7:1, 6-14
- Kouvoutsakis G., Mitsi C., Tarantilis P.A, Polissiou M.G, Pappas C.S., (2014), Geographical differentiation of dried lentil seed (Lens culinaris) samples using Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) and discriminant analysis Food Chemistry 145, 1011–1014
- Kirimer, N., Baser, K.H.C., Demirci, B., Duman, H., 2004. Essential oils of Sideritis species of Turkey belonging to the section Empedoclia. Chemistry of NaturalCompounds 40, 19–2
- Lvarez Jesus M. A, Acebes Jose L., (2004), FTIR spectroscopy monitoring of cell wall modifications during the habituation of bean (Phaseolus vulgaris L.) callus cultures to dichlobenil, Plant Science 167, 1273–1281
- Otsuka Makoto, (2004), Comparative particle size determination of phenacetin bulk powder by using Kubelka–Munk theory and principal component regression analysis based on near-infrared spectroscopy, Powder Technology 141, 244–250
- Özcana M.,*, Chalchatb J.C., Akgu A., (2001). Essential oil composition of Turkish mountain tea (Sideritis spp.), Food Chemistry 75, 459–463
- Palma M., Barroso C.G., (2002) Application of FT-IR spectroscopy to the characterization and classification of wines, brandies and other distilled drinks, Talanta, 58, 265–271
- Pappas C., Tarantilis P.A., Daliani I., Mavromoustakos T., (2002), Polissiou M., comparison of classical and ultrasound- assisted isolation procedures of cellulose from kenaf (Hibiscus canabinnus L.)eucalyptus (Eucalyptus rodustrus Sm.), Ultrasonics Sonochemistry 9, 19-23
- Pappas C., Tarantilis P.A., and Polissiou M., (1998), Determination of Kenaf (*Hibiscus cannabinus L.*) Lignin in Crude Plant Material Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy, APPLIED SPECTROSCOPY

- Rahman Atta-ur (Ed.) Studies in Natural Products Chemistry: Bioactive Natural Products Chemistry, Vol. 33(2006): Elsevier.
- Ruoff K., Karoui R., Dufour E., Luginbuhl, W., Bosset, J.-O., Bogdanov, S.,. (2005). Authentication of the botanical origin of honey by front-face fluorescence Spectroscopy. A preliminary study, Journal of Agricultural and Food Chemistry, 53, 1343–1347.
- Schulz Hartwig, Baranska Malgorzata, (2007), Identification and quantification of valuable plant substances by IR and Raman spectroscopy, Vibrational Spectroscopy 43,13–25
- Smith Brian C. Fundamentals of fourier transform infrared spectroscopy, CRC Press Tayvor and Francis Group, second edition 2011
- Socrates George Infrared and Raman Characteristic Group Frequencies Tables and Charts Jony Wiley & Sons, LTD Third Edition 2001
- Tadić Vanja, Bojović Dragica, Arsić Ivana, Đorđević Sofija, Aksentijevic Ksenija, Stamenić Marko and Janković Slobodan, (2012), Chemical and Antimicrobial Evaluation of Supercritical and Conventional *Sideritis scardica* Griseb., Lamiaceae Extracts, Molecules, 17, 2683-2703
- Todorova Milka, Trendafilova Antoaneta, (2014) Sideritis scardica Griseb., an endemic species of Balkan peninsula: Traditional uses, cultivation, chemical composition, biological activity. Journal of Ethnopharmacology, <u>http://dx.doi.org/10.1016/j.jep.2014.01.022</u>
- Tsibranska Iren a, Tylkowskia, Bartosz *,Kochanova Ruslan Alipievab, Kalina, (2011). Extraction of biologically active compounds from *Sideritis* ssp. L., Food and Bioproducts Processing 8 9, 273–280
- Vivekanand Vivekanand, Chawadec Aakash, Larssond Mikael, Larssond Anette, Olssonc Olof, (2014), Identification and qualitative characterization of high and low ligninlines from an oat TILLING population, Industrial Crops and Products 59, 1–8
- Wold Svante, (1995), Chemometrics; What do we mean with it, and what do we want from it? , Chemometrics and Intelligent Laboratory Systems 30 109-115

Ελληνική Βιβλιογραφία

 Γκολιάρης (1999) Απ. Καλλιέργεια, αυτοφυή είδη και βελτίωση στο ελληνικό τσάι του βουνού (Sideritis L.). ΕΘ.Ι.ΑΓ.Ε. Τμήμα Αρωματικών και Φαρμακευτικών Φυτών

http://www.iama.gr/ethno/sideritis/tsai_tou_vounou_files/Tsai_tou_vounou_Gkoliari s_Apostolos.pdf

- Γκόλιαρης, Α. (1984), Το τσάϊ του βουνού και η καΙJγειά του. Υπουργ. Γεωργίας. Τεύχος 16:29-31. Αθήνα.
- Πολυσίου Μ. Γ., Ταραντίλης Π. Α.(2008). Πανεπιστημιακές Σημειώσεις Ενόργανης Ανάλυσης.

7. Παράρτημα

Κανονικοποιημένα Φάσματα Απορρόφησης του γένους Sideritis

Αγιάσος- Μυτιλήνη Άνθη- Sideritis sipylea

Αγιάσος- Μυτιλήνη Φύλλα- Sideritis sipylea

Αγιάσος- Μυτιλήνη Στελέχη- Sideritis sipylea

Άγραφα-Θραψίμι- Καρδίτσα Άνθη- Sideritis scardica Griseb

Άγραφα-Θραψίμι- Καρδίτσα Φύλλα- Sideritis scardica Griseb

Άγραφα-Θραψίμι- Καρδίτσα Στελέχη- Sideritis scardica Griseb

Αλωνίσταινα- Αρκαδία Άνθη - Sideritis clandestina subsp. peloponnesiaca

Αλωνίσταινα - Αρκαδία Φύλλα - Sideritis clandestina subsp. peloponnesiaca

Αλωνίσταινα- Αρκαδία Στελέχη- Sideritis clandestina subsp. peloponnesiaca

Ανατολικό Μαίναλο- Βυτίνα- Αρκαδία Άνθη- Sideritis clandestina

Ανατολικό Μαίναλο- Βυτίνα- Αρκαδία Στελέχη- Sideritis clandestina

Ανάβρα-Όρθις-Μαγνησία Άνθη- Sideritis scardida Griseb.

Ανάβρα-Όρθις-Μαγνησία Φύλλα- Sideritis scardida Griseb.

Ανάβρα-Όρθις-Μαγνησία Στελέχη- Sideritis scardida Griseb.

Αρμανίστα-Πρέβεζα Άνθη- Sideritis raeseri Boiss & Heldr raeseri

Αρμανίστα-Πρέβεζα Φύλλα- Sideritis raeseri Boiss & Heldr raeseri

Αρμανίστα-Πρέβεζα Στελέχη- Sideritis raeseri Boiss & Heldr raeseri

Βρύναινα Μαγνησίας Άνθη- Sideritis raeseri Boiss & Heldr subsp. raeseri

Βρύναινα Μαγνησίας Φύλλα- Sideritis raeseri Boiss & Heldr subsp. raeseri

Βρύναινα Μαγνησίας στελέχη- Sideritis raeseri Boiss & Heldr subsp. raeseri

Δίρφις- Έυβοια Άνθη- Sideritis euboea Heldr.

Δίρφις- Έυβοια Φύλλα- Sideritis euboea Heldr.

Δίρφις- Έυβοια Στελέχη- Sideritis euboea Heldr.

Έυβοιας(άγριο) Άνθη- Sideritis euboea

Έυβοιας(άγριο) Φύλλα - Sideritis euboea

Φαλακρού (άγριο) Άνθη - Sideritis scardica

Φαλακρού (άγριο) Φύλλα - Sideritis scardica

Φαλακρού (άγριο) Στελέχη - Sideritis scardica

Φλώρινα- Φιλώτας Άνθη-Sideritis scardica Griseb

Φλώρινα- Φιλώτας Φύλλα -Sideritis scardica Griseb

Φλώρινα- Φιλώτας Στελέχη -Sideritis scardica Griseb

Ιεράπετρα-Κρήτη Άνθη - Sideritis syriaca L.subsp. syriaca

Ιεράπετρα-Κρήτη Φύλλα - Sideritis syriaca L. subsp. syriaca

Ιεράπετρα-Κρήτη Στελέχη - Sideritis syriaca L. subsp. syriaca

Καρπενήσι Άνθη -Sideritis raeseri Boiss & Heldr subsp. raeseri

Καρπενήσι Φύλλα -Sideritis raeseri Boiss & Heldr subsp. raeseri

Καρπενήσι Στελέχη -Sideritis raeseri Boiss & Heldr subsp. raeseri

Κρήτη Άνθη - Sideritis syriaca L.subsp. syriaca

Κρήτη Φύλλα - Sideritis syriaca L.subsp. syriaca

Λάμπεια Όρη- Ηλεία Φύλλα- Sideritis clandestina subsp. peloponnesiaca

Λάμπεια Όρη.- Ηλεία Στελέχη- Sideritis clandestina subsp. peloponnesiaca

Όλυμπος Άνθη - Sideritis scardica Griseb.

Όλυμπος Φύλλα - Sideritis scardica Griseb.

Όλυμπος Στελέχη - Sideritis scardica Griseb.

Παγγαίο Άνθη - Sideritis scardica Griseb.

Παγγαίο Φύλλα - Sideritis scardica Griseb.

Παγγαίο Στελέχη - Sideritis scardica Griseb.

Πάρνωνας αγριο Άνθη-Sideritis clandestina Bory & Chaub Hayek susbp.

Πάρνωνας αγριο Φύλλα -Sideritis clandestina Bory & Chaub Hayek susbp.

Πάρνωνας αγριο Στελέχη -Sideritis clandestina Bory & Chaub Hayek susbp.

Σαμοθράκη Άνθη -Sideritis raeseri Boiss & Heldr subsp. raeseri

Σαμοθράκη Φύλλα -Sideritis raeseri Boiss & Heldr subsp. raeseri

Σαμοθράκη Στελέχη -Sideritis raeseri Boiss & Heldr subsp. raeseri

Ταίγετος- Μάνη Άνθη- Sideritis clandestina Bory & Chaub Hayek subsp

Ταίγετος- Μάνη Φύλλα - Sideritis clandestina Bory & Chaub Hayek subsp

Ταίγετος- Μάνη Στελέχη - Sideritis clandestina Bory & Chaub Hayek subsp

Θεσπρώτια-Αυλότοπος-Σούλι Άνθη - Sideritis raeseri Boiss & Heldr raeseri

Θεσπρώτια-Αυλότοπος-Σούλι Φύλλα - Sideritis raeseri Boiss & Heldr raeseri

Τύμφη-Ιωάννινα Άνθη - Sideritis raeseri Boiss & Heldr raeseri

Τύμφη-Ιωάννινα Φύλλα - Sideritis raeseri Boiss & Heldr raeseri

Τσεπέλοβο –Ιωάννινα Άνθη - Sideritis raeseri Boiss & Heldr raeseri

Τσεπέλοβο –Ιωάννινα Φύλλα - Sideritis raeseri Boiss & Heldr raeseri

Τσεπέλοβο –Ιωάννινα Στελέχη - Sideritis raeseri Boiss & Heldr raeseri

Τζουμέρκα-Συράκο-Ιωάννινα Άνθη - Sideritis raeseri Boiss & Heldr

Τζουμέρκα-Συράκο-Ιωάννινα Στελέχη - Sideritis raeseri Boiss & Heldr

Χέλμος Μαυρουδάτα Στύγκος Στελέχη Sideritis clandestina subsp.

Χέλμος -Ντουρτουβάνα Άνθη - Sideritis clandestina subsp. peloponnesiaca

Χέλμος -Ντουρτουβάνα Φύλλα - Sideritis clandestina subsp. peloponnesiaca

Χέλμος -Ντουρτουβάνα Στελέχη - Sideritis clandestina subsp. peloponnesiaca